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ON ELECTRONS IN QUANTUM CHAOS STATE
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We show that band electrons in AnC60 crystal (C60 fullerene doped with
alkali ions A) are in highly chaotic quantum state. We describe intensity of
the chaos by means of the Shannon information entropy, which we calculate
using single particle Bloch functions. The entropy provides a quantitative
measure of scars as well as degree of electrons delocalization in gaps be-
tween C60 molecules. Implications of our results for conductivity in A3C60
are discussed.

PACS numbers: 05.45.+b, 61.48.+c

1. Introduction

In this paper we show that electrons from neighborhood of the Fermi surface
in molecular crystals AnC60, where A denotes alkali metal (K, Rb), are in highly
chaotic quantum state, whose origin is of both geometrical and band nature.

Phenomenological explanation of geometrical chaos is as follows. Let us as-
sume that peak of fully occupied band  hu of non-doped crystal C60 is zero on
energy scale. If we add ions A, together with additional electrons (thermodynami-
cally stable values of n are of order 3, 4, 6), to such a crystal, then according to the
band theory [1, 2], a new Fermi level for the electrons EF 1.5 eV will be lying in
the bands group labeled as t1u. The bands ħ u and t1 u are separated by energy gap
of 1 eV, and the band width of t1u is of order 0.5 eV. When we express the
energy in terms of the de Broglie electrons wavelengths (we assume purely kine-
matic growth of energy in molecular crystal) we get λF 10 Å. This means that
the electrons in the neighborhood of the Fermi surface in doped molecular crystal
can "feel" geometry of whole C60 molecules, since their diameter D is of the same
order D 10 Å. In such a case these electrons, in quasi-free electron approxima-
tion, can be treated as billiard balls in three-dimensional quantum billiard, where
the scattering centers role is played by heavy C60 molecules.

The geometrical quantum chaos described above gives contribution to chaos
of the t1u-electronl. Obviously not all energy levels covered by this scattering
model are admissible in AnC60 crystals since their band structure h u , t1u, tig • •

is clearly preserved.
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The band chaos is of purely quantum origin. It appears in all those crystals,
where band electrons are partly localized within the elementary cell. In the case
of AnC60 systems it should be particularly sharply visible because of molecular
structure. Computer calculations [2] show that potential of a C60 molecule in the
crystal can be modeled by attracting spherically symmetric well. Top of the well
is on the spherical surface of diameter D 10 Α and its depth is of R. 3 Α.
Therefore, the electrons from t1u band will be partly localized in energy wells of
C60 centers, which are also the nodes of crystal lattice. This together with the
translational symmetry condition (the lattice has the fcc structure) should lead to
strong oscillation of wave functions in nodes neighborhood and in consequence to
quantum chaos.

We describe both kinds of quantum chaos by means of the Shannon entropy
S(k) calculated from single particle Bloch functions. It can be shown that local-
ization length lv(k) of the Bloch function ψv,k(x) is proportional to expSv(k) in
C60 nodes neighborhood [3]. The Shannon entropy can be treated as an indica-
tor of "fitness" of Berry's conjecture [4], i.e. large value of the entropy indicates
correctness of the conjecture.

2. Chaos entropy

According to the Bloch theorem the electron's quantum state ψρ,k and its
energy Εv(k) (in v-th band for vector k from the Brillouin zone), in translationally
invariant crystal, can be determined from the Schrödinger equation

where V(x — Ri) denotes potential around i-th lattice node whose location is
indicated by vector Ri and m is the electron mass. The sum runs over all lattice
nodes. In the case of finite crystals of volume Ω we assume periodic boundary
conditions.

As it is commonly known the functions ψv,k (z) can be decomposed into plane
waves

Summation in the above formula runs over all vectors Kn of the reciprocal lattice.
From analysis of normalization condition Σn |0v (k+Κn ) | 2 = 1 we get the following
interpretation of the Fourier coefficients: ψv(k+Κn) is an amplitude of probability
that the electron is moving within the crystal in the direction of k + Κn vector.
An electron described by the function Ψν,k can be considered as being in chaos
state when the amplitudes ψv(k + Κ )| are of the same order for all directions
Κ. This statement is an analogue of Berry's conjecture, which says that quantum
eigenstates of classical ergodic systems locally look like random superposition of
plane waves [4]. If this is the case then the wave function Ψρν ,k(x) should have
scars in real space [5]. The more scars the more delocalized is the function. Since
description of wave function scars (in particular in the three-dimensional space x)
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by means of graphs is rather inconvenient we will use the notion of the Shannon
entropy in a state ψν .k which is defined as follows:

The entropy Sv(k) is non-negative and in the case of maximal chaos it behaves like
log N , where N is number of bands. Using the entropy S(k) and energy Ε(k)
we can define common density partition function for energy and entropy in the
Brillouin zone (BZ) as

where VBZ denotes the volume of BZ and δ is the Dirac function. The density
p(E, S) takes high values where there is high density of states of energy Ε and
simultaneously high density of states of entropy S. High value of entropy means
high delocalization of electron states in gaps between lattice nodes.

3. Results and conclusions

We solve stationary Schrödinger equation for three model potentials:
(i) For description of the geometric chaos we use spherical potential VG(x) =

VGθ(R2 — χ2 ), where θ is the Heaviside step function and R = D/2 = 3.55 Α is
the radius of Ch0 molecule. The potential VG = 3 eV was derived from computer
simulation as a condition of effective scattering of particles with wavelength D.

(ii) For description of the band chaos we use the function VB (x) =
VB {

θ

[(R + ΔR) 2 — Χ2 ] — θ(R2 — x2)}, where ΔR = 3 Á and potential VB =
—4 eV.

(iii) For description of the mixed case of bands and geometrical chaos we use
the function V(x) = VB(x) + VG(x).

In order to simplify the calculations we assume that the lattice is sc and the
lattice constant is α = 10 Å i.e. the real distance between the nearest neighbors
C60 —C60. The integrals p(E, S) were calculated using 46k of special (high symme-
try) points in BZ. The graphs of p(E, S) are normalized. The beginning of energy
scale was set at the peak of fully occupied band hu . Calculations were carried out
for clusters of the size 5 x 5 x 5 in the reciprocal space which means that we took
into account N = 125 bands.

Geometrical quantum chaos dominates for large non-negative energies (cf:
Fig. 1a), whereas in case of negative energies the band chaos dominates (cf.
Fig. 1b). The geometrical chaos favors increase in general quantum entropy. Band
of higher chaos are moved in the direction of increased entropy (cf. Fig. 1b and c).

Besides Berry's conjecture there exists spectral conjecture (cf. [6]) but its
direct application to our case is impossible since our system has the continuous
spectrum. We expect that generalization of spectral approach to continuous case
should lead to appearance of (density) partition functions of group velocity which
are used in formulas describing electron transport in crystals.

High quantum chaos for Á3C60 molecular crystal (where expected Fermi
energy levels are marked in Fig. 1) can be responsible for bad conductivity and
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Fig. 1. Graphs of density p(E, S)/Ν, where Ν is the number of bands. ΕF denotes
expected Fermi energy level for Α3C60 crystal. (a) Geometrical chaos. (b) Bands chaos.
(c) Bands and geometrical chaos. The peaks (left to right) belong to bands t1u, t1g , etc.

linear dependence of resistivity on temperature of the system. This result (high
quantum chaos) agrees well with expectation that the electron transport in Á3C60
can be controlled by quantum critical point [7]. Other implications of the model
are discussed elsewhere [8]. 	.
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