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SUPERCONDUCTING CHARACTERISTICS
OF THE PENSON-KOLB MODEL

W.R. CZART AND S. ROBASZKIEWICZ
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We study superconducting properties of the Penson—Kolb model, i.e.
the tight-binding model with the pair-hopping ( intersite charge exchange)
interaction J. The evolution of the critical fields, the coherence length, the
Ginzburg ratio, and the London penetration depth with particle concentra-
tion n and pairing strength are determined. The results are compared with
those found earlier for the attractive Hubbard model.

PACS numbers: 74.20.—z, 71.28.-1d, 74.25.Ηa

1. General formulation

The Penson-Kolb (PK) model is one of the conceptually simplest phenomeno-
logical models for studying superconductivity in systems with short-range, almost
unretarded pairing [1, 2]. It includes a nonlocal pairing mechanism (the pair hop-
ping term J) that is distinct from the on-site interaction in the attractive Hubbard
(ΑΗ) model and that is the driving force of pair formation and also of their conden-
sation. Thus, the superconducting properties can be essentially different in these
two models [2]. In the paper we focus on the PK model with arbitrary particle
concentration and discuss its superfluid characteristics which have not been con-
sidered up to now. In the analysis we have used a linear response theory [3, 4]
and the electromagnetic kernel has been evaluated within HFA-RPA scheme. The
model Hamiltonian has the following form:

where t is the single electron hopping integral, J is the pair hopping (intersite
charge exchange) interaction, the limit (ii) restricts the sum to nearest neighbors
(nn). The Peierls factors in (1) account for the coupling of electrons to the magnetic
fleld via its vector potential A(r): Φij = (-e/ħc) fRjRi dvA(r), and e is the electron
charge.
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From the linear response theory [3, 4] the expectation value of the Fourier
transform of the total current operator is

The diamagnetic part of kernel evaluated within HFA has the following form:

In the static limit and q --> 0 for the transverse part of the paramagnetic
kernel we obtain

In the local approximation (London limit) the magnetic penetration depth is
determined in terms of the transverse part of the total kernel as λ = [—Κ ia 

—Kparaxx(ω =0)]-1/2Using the value of λ and the difference of the free energy
between the normal (N) and S phases one is able to determine the thermodynamic
critical field Ηc and the Ginzburg—London correlation length &GL as Η^ (Τ)/8π =
[FΝ(T)—FS(T)]/Να3, GL = Φ ρ /2π'λΗc, where Φ0 = hc/2e, and to obtain the
estimations for the critical fields H' 1 ^ (ln k/κ)Ηc and Η 2 = Φ0/(2πξ2GL), where

= λ/ξGL•

2. Results of numerical solutions and discussion

Examples of the evolution of the penetration depth (its inverse square value .
1/λ 2 ), the critical field Η , the coherence length GL and the Ginzburg ratio
κ = λ/ξGL with n are shown in Fig. 1, for d = 2 SQ lattice and a fixed value
of J0/B, whereas Fig. 2 shows the plots of Η'  (for d = 2 SQ lattice), 1/λ 2 and
GL (for d = 2 SQ and d = 3 SC lattices) as a function of J0/B for n = 1.

As J increases the 1/λ 2 evolves smoothly between the limit of weakly interacting
single-particle carriers (with λ-2 being proportional to the bandwidth B) and that
of tightly bound pairs (with λ-2 ti J). Notice the increase in λ-2 as a function of
J0 (cf. Fig. 2), i.e. the behavior being qualitatively different than that found for
the AH model, where λ-2 continuously decreases with increasing U|/B [4, 5]. One
also finds that in the low density limit λ-2 ~ n for arbitrary J0/B (cf. Fig. 1),
whereas for J0/B » 1: λ-2 n(2 — n) for any n. With increasing J the Η2
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a substantial variation of GL with n in the weak-to-íntermedíate coupling regime
(cf. Fig. 2), where ξGL attains the minimal value at half-filling. This feature is
largely due to the strong n dependence of Η , which in weak coupling is propor-
tional to Δ2D(μ), where D(ε) is the density of states (DOS) function.

As it follows the analysis of limiting cases the increase in the Ginzburg ratio
‚ς = λ/ξGL with J is exponential in the weak coupling limit [κ  exp(—Β/J0)],
whereas in the opposite limit κ becomes proportional to ‚/1/J. A crossover
between these two types of behavior takes place for intermediate values of J
(1 < J0/B < 2). In definite limits one finds universal κ vs. n dependences:
(i) κ ~ [n(2 — n)]—1/2, for J0/Β »1 (arbitrary n, any lattice) and (ii)κti 1/',
for n « 1 (arbitrary J0/Β, SQ lattice), being analogous to those obtained for
the attractive Hubbard model [4]. Beyond these limits κ(n) is not universal and
strongly depends on the details of D(ε). In particular, the local maximum of κ at
n = 1 seen in Fig. 1 results from the van Hove singularity in D(ε) for SQ lattice.

3. Final comment

Let us stress that due to the nonlocal pairing mechanism (intersite charge
exchange) the dynamics of electron pairs in the PK model is qualitatively different
from that in the attractive Hubbard model [2]. It results in different thermo-
dynamic and electrodynamic properties of both models, especially in the strong
coupling limit.

In the latter model with increasing |U| the Τc and Η increase exponentially
for small ‚U', then they go through a round maximum and they decreαse as t2/|U|
for large coupling [4, 5]. On the contrary, in the PK model there is no maximum .

of Η and Τ  at intermediate J/t and both these quantities increase linearly with
J for large coupling (cf. Fig. 2 and Ref. [2]). Also the behavior of the penetration
depth λ is different. In particular, for t → 0: λ decreαses with J in the PK model
(λ 2 ~ 1/J), while it increαses with |U| in the AH model (λ 2 |U|/t2 [4]).

In this report we have concentrated on the electromagnetic properties of the
model at Τ = 0. A detailed study of the finite temperature behavior, taking into
account the effects of phase fluctuations in d = 2 system (within the framework
of Kosterlitz—Thouless scenario) and providing a rigorous solution in the case of
d = οο system will be given elsewhere.
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