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BOUND STATES OF FERMIONS ON 2D LATTICE
IN A DILUTE LIMIT

M. Β KA* AND R. ΜICNAS†
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Umultowska 85, 61-614 Poznań, Poland

We examine extended bound states in a dilute limit of the extended
Hubbard model on the two-dimensional square lattice. By solving exactly
the two-body problem we have determined the binding energies, mobilities,
and dispersion curves across the Brillouin zone for bound states of various
symmetries. It turns out that the d-wave pairing is strongly favored by the
nnn hopping and the intersite local pairs can have small effective masses,
even in the case of strong binding.We have also found a possibility of ex-
tended S—d2-2 mixing of the bound states.

PACS numbers: 74.20.-z, 03.65.Ge, 71.10.Fd

1. Introduction

The case of a bound fermion pair in an empty lattice is one of few rigorous
results in the theory of superconductivity. It can be regarded as a limit of both
BCS theory and local pairing theory. In this case we can solve exactly the two-body
Schrödinger equation [1, 2]. The results give an insight into the behavior of pairs of
different symmetries (important, as the pairing symmetry in many HTS is believed
to be of the d2_2, hereafter d, type). The critical values for binding of the intersite
extended s-type (s*) pairs are also critical values for the superconductivity in 2D
systems with low electron density. In this paper we present chosen results for the
binding energies, mobilities, and dispersion of singlet bound pairs (BS) in the
extended Hubbard model.

2. The method

We examine BS in the extended Hubbard model on a 2D square lattice
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where i, j denote the lattice sites, ci σ is an electron annihilation operator, Sig =
(1/2)(ci↑cj↓+cj↑cj↓) is a singlet electron pair annihilation operator, T μ are triplet
pairs operators: Τ0 = (1/2)(ci ΐ cj i = cc), Τ+ = citcát/', Τ- =
gij is an interaction between the electrons on the lattice sites i and j: gS — singlet
and 9Τ — triplet one. In the standard notation gii = U, gij = W1, ti j  = t i for nn
sites and gij = W2, tij = t2 for i, j being the nnn. In the following we will only
consider the singlet pairing channel.

The Schrödinger equation for a two-particle problem is

where |F, ψ) is a wave function of a pair with a center-of-mass momentum P. | Ρ, Ψ)
is expressed as a linear combination of functions |P, p) with relative momentum
p, which are the eigenfunctions of Η0 [1]

Solving the equation for coefficients F(p) we obtain the pair wave function ψ(i)

where

is the Green function, ψ(i|p) are the plane waves and ΕΡ = —4t 1 x
[cos(Ρx /2+p )+cos(Ρy/2 — —8t2 cos(Ρx/2+px) cos(Ρy /2 —py ) is the energy
of two free electrons (lattice constant is set to 1). The equation for 0, on the sites
where the interaction g is present, in the matrix form is: [1 — G(Ε, Ρ)g]ψ = 0. For
other sites we have to use Eq. (4). The energy eigenvalues are calculated from the
determinant: det[1 = G (Ε, P)g] = 0.

Transforming to the reciprocal space and making use of the symmetry prop-
erties, the wave function can be divided into five parts transforming according to
the irreducible representations of the point symmetry group (C4v) of the 2D lat-
tice: Ψ0 = 1 (Al, s-wave), Ψ1(ρ) = cos(py) + cos(Py) (A1, s* ), ψ2(ρ) = cos(px ) —
cos(py) (Β1, dx2- y 2), ψ(ρ) = 2 cos(px ) cos(py ) (Ai , s * ), ψ4(ρ) = 2 sin(px) sin(Py)
(Β2, dxy ). The eigenvalue equation is separated into three independent parts, de-
scribing different types of pairing

for s*-type, 1 + |W1|G22 = 0 for d x 2- y 2-type, and 1 + W2|G44 = 0 for dxy-type;

The relative pair mobility is evaluated as
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where mf = ħ2/2(t1 + 2t 2 ) is the mass of a free electron and the effective mass m*
of a pair is calculated from the curvature of dispersion curves around the Γ point,
where the energy minimum is.

3. Results

The binding energies and mobilities of bound pairs of different symmetries
for nn hopping are shown in Fig. 1. Pairs with the largest binding energy and no
threshold to bind are of the s*-type for U = 0. Inclusion of repulsive on-site or
intersite interaction decreases the binding energy and a threshold appears, which
for U = ∞ is |W1c/8t1 = 0.25. Pairs of the d-type are of the smallest binding
energy and the largest critical value: |W1 c /8t1 = 0.915 for dx 2- y 2 and |W2c/8t1| =
0.827 for dxy (not shown) pairing. Let us note that neither U nor W2 interactions
influence pairs of dx 2- y 2 symmetry.
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The nnn hopping t2 (of the opposite sign to ti) enhances both mobilities and
binding energies of pairs of all symmetries. The rate of increase is the largest for
d-type pairs. Starting from |α| 0.3 (α Ξ t2/t1) the pair mobilities can become
larger than 1 and even strongly bound intersite pair can move easily without
breaking its bond. For |W1| —> ∞, Z —> ±|α|/(1 + 2α) with +(—) for d(s*)-wave
pairs [1]. The plots for α = —0.45 (the value corresponding to YBaCuO) are shown
in Fig. 2, where d-type pairs mobility reaches the value 6. Also s*-wave pairs
mobilities are larger than 1, at least in a certain parameter range. They become
negative for | W1 | large enough, which is due to moving the s-wave dispersion curves
minima towards the boundary of the Brillouin zone (Bz) with increasing W1 ^. In
the inset the binding energies are shown. The d pairs binding energy increases
considerably relative to that of pairs of other symmetries, but a threshold still
exists for this pairing (| Wιc|/8t1 = 0.164). It is interesting that for small W1 | the
binding energies of s* pairs with U = 0 are larger than that of d pairs, despite the
fact that the s* pairs mobility is smaller than d-type one in the whole range of
intersite interactions.

The pair dispersion curves are shown in Fig. 3. We can observe moving of
s*-type pairs minima with increasing W1 | as was described above. For medium
intersite interactions a mixing of the s* —d states occurs. Such a mixing also appears
for all |W1| on the Bz boundaries, along the lines MX, MY. For small values of
the intersite attraction we notice that the shαllow d states (with small binding
energies) seem to enter the scattering continuum. It is probable that they turn into
the resonαnce states with a finite lifetime. We were unable to obtain real solutions
for the binding energies near the corner of the Bz.

In Fig. 4 the s* — d stability diagram for shallow bound states is shown. Above
the plotted line the s*-type pairs (and d below) cannot exist due to a critical value
of W1 for binding for a finite U. The diagram implies that both increasing W2
and nnn hopping act in favor of d-type pairing. A peculiar situation occurs for
α = —0.5 and W2 = 0, where both s*- and d-type pairs have no critical value. It
is interesting that for |α| > 0.5 d-type pairs have no threshold to bind unlike the
s*-type pairs for U = 0.

In conclusion we have shown that nnn hopping increases the pair mobility,
which can be large even in the case of strong binding, strongly favoring the d-type
pairing. We have shown a possibility of existence of a s* —d mixed state in certain
areas of the Bz. Our results for the s*-wave pairs are directly related to the stability
of s*-wave superconductivity in a dilute limit on 2D lattice [3].
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