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We generalize the double exchange to describe holes doped in degenerate
eg orbitals in La1 -xΑ ΜnO3 manganites, where A are divalent alkaline earth
ions. Assuming an orbital liquid of disordered e g orbitals we find iSotropic
ferromagnetic exchange interactions which increase with hole doping. The
magnon dispersion agrees very well with the experimental data in ferromag-
netic metallic manganites.
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The ferromagnetic (FM) metallic phase in doped La i _Α ΜnO3 compounds,
where Α are divalent alkaline earth ions, and 0.1 < x < 0.5, is believed to be
stabilized by the double-exchange (DE) mechanism [1], using purely magnetic
interactions. However, there are indications that this concept is oversimplified, as it
does not allow to reproduce the experimentally observed temperature dependence
of the resistivity, and the value of the FM transition temperature itself [2]. Further
evidence comes from the optical conductivity in the FM metallic phase, with a very
weak Drude peak and strong intensity of the incoherent part distributed uniformly
in a broad range of 0 < ω < 1 eV, both features indicating the crucial role of .
another degree of freedom — the orbital variable for e g electrons [3, 4].

Double exchange in degenerαte eg orbitals is expected in the first instance to
produce anisotropic phases, and indeed the antiferromagnetic (AF) layered struc-
tures of the A-type, and the chain-like C-type structures are stabilized at low
electron concentration n « 1 (i.e., x = 1— n 0) [5]. The case of the FM metallic
systems (n 0.7) is different, as here electrons feel a strong Coulomb repulsion
U, and the system becomes an AF charge-transfer insulator at n = 1. Here also
the magnetic interactions are strongly anisotropic, and their experimental values
and the A—AF order observed in LaΜnO3 can be reproduced only by considering
superexchange (SE) between Mn 3+ ions with degenerate e g orbitals [6].
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Here we investigate a novel effective t—J model for doped La1- xΑxΜnΟ3
compounds in the FM regime [7],

where Ηt describes the correlated hopping in the e g band, and Η (ΗtJ) stands for
the SE term due to virtual hopping of e g (t2g ) electrons. The Hilbert space in the
large-U limit contains only d 4 (Mn3+) configurations: iθ, Μ)4 = f ixbL| Μ) and
|iε, Μ)4 = f ź biz |Μ) with Μ being the component of spin S = 2, and d3 (Mn4+)
configurations, |i, m)3 = b† i0|m) , with m being the component of the core t 2g  spin
S = 3/2. We use a local basis for the occupied e g orbitals: |x) _ |x 2 — y2) and

| z) ≡ |3z 2 = r2 ). The fermion operators { f x, f ź} describe the orbitals, while we
represent the (local) spin state |M) (|m)) by means of the Schwinger bosons at
site i, α †i↑and α†i↓. The orbital bosons for the Mn3+ sites,b†ixand b†izand for the
empty Mn4+ sites, b †i0,are introduced to implement the local constraints,

They restrict the physical space to contain no double occupancy in the e g orbitals.
In addition, the number of fermions is equal to the number of bosons for each
orbital, f †iλ fiλ),= b †iλ biλ,λ =x, z,which gives two additional terms with the
Lagrange multipliers in the Hamiltonian  Η.

The occupied e g orbital at site i, |i) = cos O| iz) + sin O| ix), may be rep-
resented by an orbital angle θ. The hopping term Ηt reduces in the mean-field
approximation for the slave bosons [8] to the fermion problem coupled to the
Schwinger boson operators (for S = 2),

where the hopping elements tiff jρ for the orbitals λ, p = x, z are renormalized by
qix = V2δ/[1 + δ + (1— δ) cos 20] and qiz = 2δ/[1 + δ = (1— δ) cos 20]. Replac-
ing the Schwinger bosons by the Holstein—Primakoff bosons, one finds up to lowest
order Σσ α †iσαjο. = 2S— 1/2(

α

†

i

↓ 1

α

†

i

↓ α j↓1-2αhα 1). The zeroth-order term α 2S
gives a band Hamiltonian Ht(0) which describes two fermionic bands narrowed by
correlation effects. The remaining first-order terms Ht 1) may be written as prod-
ucts of bilinear terms in fermion (f λ) and magnon (α †iσ) operators. Averaging over
the correlated band structure yields the magnon dispersion due to the DE mech-
anism Οι (t/2S)Rα b(2 — cos qx = cos qy ) and α (t/2S)Rc(1 = cos qz ) in the main
directions of the cubic Brillouin zone, with t = 0.40 eV being the largest local
hopping element between two 3z 2 — r2 orbitals along the c-axis. The lattice sums
Rα b and R depend on the average occupancy of x and z orbitals. For an orbital
liquid, with cos 20 = n x — nz = 0, they are approximately equal, reproducing the
qualitative result of the Kondo lattice model with a non-degenerate band [9].

The hopping of eg electrons between a pair of Mn3+ ions creates a double
occupancy in the eg orbitals at one site and is included in a perturbative way in the
manganite t—J model (1). By considering the d4id4j = d3i(t32g)d5j (t32geg2) excitations
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one finds the magnetic part of the e g SE between spins S = 2 [6],

where ε( 6Α1) = U-5J, ε(4Α1) = U, ε( 4Ε) = U+2/3JΗ, ε(4 Α2) = U+ JH are the
excitation energies of high spin ( 6Α 1 ) and low spin ( 4Α 1, 4Ε, and 4Α2) configurations
at Mn 2+ ions, expressed in terms of U 7.3 eV and JH = 0.69 eV [6], and ni =
f x fix + f fiz. This part of the SE depends on the occupied orbitals of both sites
via the projection operators, Ρζξ(ij) , = ΡiςΡΡjΡi Ρjιand Pζζ(ij) = 2Ρi^Ρjς, where
the on-site projections give an orbital parallel/perpendicular (Ρjξ ( ς ) = 1/2 + ταJ) to
the bond direction, with α = α, b, c for three cubic axes. The orbital operators ταi
are defined in a 2 x 2 pseudospin space and are given by the combinations of two
Pauli matrices σzi and σ2 : ziα(b) = 4 ( —σzi + 'fiV 3σix ), if = 1/2 σzi

The t2g-hopping leads in leading order to an isotropic SE [7],

with the ΑF SE constants Jt = 2.1 meV, J t = 4.6 meV, and Jt = 5.5 meV for the
pairs of Mn3+—Mn3+, Μn4+—Μn4+, and Μn3+—Μn4+ ions, respectively, and Si
is an S = 2 (S = 3/2) spin operator for a Mn 3+ (Μn4+) ion with ni = 1 (ni = 0) e g

electrons.
Both SE terms (4) and (5) may be expanded using the Schwinger bosons

around the FM state and lead to an isotropic reduction of the effective FM DE
interactions. For the numerical evaluation we adopted the realistic parameters
of LaΜnO 3 as given in Ref. [6]. One finds that ΗtJ gives a larger contribution,
while the FM and AF terms in Η almost compensate each other in the orbital
liquid state with (Ρζξ  ij) = (Ρζξij)= 1/2,and give a weak net AF interaction.
The theory predicts an observed increase in the magnon width W with increasing
doping [10] due to the DE which dominates in the metallic regime of x > 0.08
(Fig. 1). At small doping x < 0.08 we show instead W for a polaronic A—AF
phase [6]. The DE vanishes in the x —> 0 limit, in contrast to the non-physical
result of band structure calculations that ignore electron correlations, where the
largest FM interactions occur at x = 0 [ΙΙ], precisely at the point of the A—AF
insulator LaΜnO3. The exchange interactions found at x = 0.3: JS = 8.20 and
JS = 8.26 meV are almost isotropic and reproduce well (Fig. 2) the experimental
points for La0.7Ρb0.3 MnO 3 and the value of JS = 8.79 meV given in Ref. [12].

In conclusion, the magnon dispersion derived from DE for degenerate e g or-
bitals supplemented by smaller SE terms agrees well with the experimental findings
in FM metallic manganites [10, 12].



196	 Α.Μ. Oleś' L.F. Feiner

Fig. 1. Width W of the magnon dispersion in FM manganites La1- xΑxΜnO3 as a
function of doping x, as obtained including only the DE mechanism (dashed line), and
both DE and SE contributions from Eq. (1) (full line). In the AF insulating (AFI)
phase at x < 0.08 only the anisotropic SE interactions contribute. Experimental points
correspond to: La1-xSrxMnO3 [10] (diamonds) and La0.7Pb0.3MnO3 [12] (cross).
Fig. 2. Magnon dispersion ωq as obtained at x = 0.3 doping level using DE and SE
contributions (heavy line); parameters as in the text and in Ref. [6]. Experimental data
for La0 .7Ρb0 . 3 MnO 3 (circles and dashed line) are reproduced from Ref. [12].
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