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The Heisenberg model cannot uncritically be applied to itinerant-elec-
tron magnets, including those that show non-collinear order. Density func-
tional theory is therefore generalized to apply to non-collinear itinerant-elec-
tron magnets. The appropriate Kohn—Sham equations are discussed and the
total energy of spiral magnetic order is used to determine the magnon spec-
trum in the adiabatic approximation. The energy spectrum of transverse spin
fluctuations can also be estimated with the total energy of spiral magnetic
order and allows a determination of thermal properties of itinerant-electron
magnets. Calculated results for Fe, Co, Ni, and FeCo are discussed and com-
pared with experimental results.

PACS numbers: 71.15.Mb, 75.10.Lp, 75.30.Ds, 75.30.Kz

1. Introduction

Non-collinear magnetic structures are found among transition-metal systems
and the rare earths. They have been discussed in length by e.g. Keffer [1] and
Coey [2]. These authors, just as well as others, interpret this physical phenomenon
theoretically in the framework of the Heisenberg model assuming localized mag-
netic moments. While this is certainly justified for the rare-earth systems, for the .
transition metals and their compounds this approach is questionable because here
the magnetic moments originate from itinerant electrons. Collinear magnets made
of transition metals have therefore been intensively studied using first-principles
energy-band approaches provided by the density functional theory [3, 4]. A good
review is that of Staunton [5]. Although non-collinear ground states seemed rather
exotic and rare, density functional theoretical energy-band methods were devel-
oped and applied to these systems quite successfully in the late eighties [6-8].

Somewhat earlier it became clear that the Stoner theory which explains
ground—state properties of the ferromagnetic transition metals quite well, fails to
describe the thermal properties of itinerant-electron magnets. The reason for this
failure was identified in the neglect of transverse fluctuations of the magnetization
that, if viewed as originating from well-developed atomic moments, is equivalent
to neglecting fluctuations of the direction of the atomic moments. This thus added
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new incentive to develop non-collinear magnetism further. An. extensive discussion
of the underlying physics can be found in the paper by Gyorffy et al. [9] and, in a
larger context, in the book by Moriya [10].

This is not the place to review all aspects of the presently used first-principles
studies of non-collinear magnets. Sandratskii [11] who, in particular, emphasized
and unraveled symmetry properties of this phenomenon, went a long way in this
direction. Here we want to show that in the adiabatic approximation low ly-
ing spin excitations (magnons) and spin fluctuations can be modeled by means
of non-collinear magnetic configurations whose total energies may be computed
ab initio with only little effort. Previous work along these lines is that by Antropov
et al. [12, 13] as well as Uhl and Kubler [14, 15].

2. The Kohn—Sham equations
The derivation of the Kohn—Sham equations for non-collinear magnets fol-

lows the standard procedure of density functional theory and was, in fact, already
written down by von Barth and Hedin as early as 1972 [16], but was not further
pursued at that time. In this case the total energy is considered as a functional
of the two-by-two density matrix, 7•ß.(r), and the Kohn—Sham equations are there-
fore two-component spinor functions [8] whose solutions {ψια(r ), i = 1, ... , ∞ ;
α = 1, 2} define the elements of the density matrix for an N-electron system

and determine the density through

as well as the vector of the magnetization

In atomic units the Kohn—Sham equations can be written as

where n1 = nl(r) and n 2 = n2 (r) are the local eigenvalues of the spin-density
matrix, Εxc is the exchange-correlation energy. Also the polar angles θ and φ
depend on r.

For practical calculations it is common to use the atomic sphere approxi-
mation for the magnetization direction, i.e. the direction of the magnetization is
averaged to a constant in the atomic sphere of every atom and is different for
different atoms. The vector magnetic moment hence is defined as
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where AS(n) indicates integration over the n-th atomic sphere in the crystal. Thus
the dependencies on r in Eqs. (1) to (6) are replaced by the coarse grained mesh
given by the positions of the atoms.

Further progress is made by an old observation of Herring [17]. Suppose the
magnetic moment varies from atom to atom forming a spiral magnetic structure
defined by

where the commas separate Cartesian components, 8, φ = q • Rn are spherical
polar coordinates, and Μ is the magnitude of the magnetic moments Μ„ (i.e.
independent of n). Then — provided spin-orbit couplng is ignored — it can be
shown [17, 11] that a combined symmetry operation consisting of a spin rota-
tion through φ = q • Rn and translation through Rn, denoted by {q • Rn|ε|Rn},
commutes with the Kohn-Sham Hamiltonian and allows the formulation of a gen-
eralized Bloch theorem of the form

where ψk(r) is the spinor wave function and the vectors k lie in the first Brillouin
zone which is defined as usual by the translation vectors R. This form of the
Bloch theorem permits to restrict considerations of real space to a chemical unit cell
avoiding any supercells. This is an enormous benefit supplied by group theory [11].

The total energy of an itinerant-electron magnet is now calculated by con-
straining the magnitude of the magnetic moment to a chosen value Μ and pre-
scribing a value of the spiral q-vector as well as the angle θ. The resulting total
energy is then

Of course, the ground state is given by the total energy minimum. For bcc-Fe,
hcp- or fcc-Co, and fcc-Ni this occurs for g = 0, but, for instance, in fcc-Fe a value
of q = (0, 0, 0.6)2π/α is found [18, 19]. Thus, in accordance with experimental
evidence, we state that fcc-Fe possesses a non-collinear ground state.

3. Adiabatic spin dynamics

If we set out to describe the motion of the magnetization as a function of
time at each point r in the crystal, we must determine the equation of motion for
m(r). We thus look for the equation of motion of its constituents and are led to
the time-dependent Schrödinger (or Kohn-Sham) equation for the wave functions
ψi α , which in principle should give the time dependence of the spin-density matrix,
ń, and thus that of m(r) [12, 13]. Knowing that the band widths of the d-electrons
in the crystal are of the order of electron volts, while the low-lying excitations we
look for are spin-waves which have energies of the order of milli-electron volts,
we may assume that the motion of the electrons is much faster than that of the
magnetic moments. This assumption implies that we imagine different timescales
govern the physics of the electrons and the magnetic moments [9]. The problem is
comparable to the Born-Oppenheimer or adiabatic approximation with which we
separate the motion of the electrons from that of the nuclei. It has become common
to use the term adiabatic here. Nevertheless, it is important to emphasize that a
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systematic adiabatic approach has not been developed for the spín problem, simply
because — in contrast to the nuclear motion — there is no large mass governing
the timescale. The approach to take is to carry out the necessary calculations and
compare the results with experimental data which will decide whether or not the
approximations are tolerable.

In the adiabatic approximation one assumes that the time-dependent Schrö-
dinger equation holds at any instant of time for a potential that parametrically
depends on time. The energy eigenvalues are then supposed to depend on time in
such a way that no levels cross and transitions to other levels do not occur.

In our case the time-dependent parameters in the Schrödinger equation
are the angles θ and ψ in Eq. (8). The essential assumption now is that the
time-dependent Schrödinger equation holds in the context of density-functional
theory in the adiabatic approximation. It has been shown by Gross et al. [20] that
density-functional theory of time-dependent phenomena can be justified extremely
well, so that we can work out the equation of motion for the magnetization by eval-
uating ∂m(r)/∂t using Eq. (3) etc. These equations are subsequently linearized
and one finds for the magnon frequency in the case of elementary ferromagnets

Here ΔΕ(q, 8) is the total energy difference with respect to the ground state. Details
of the derivation will appear elsewhere. Using completely different methods this
result has been written down before by other authors [21-23].

For small q we calculate the spin-wave stiffness constant by means of

and compare the results for the elementary ferromagnets in Table I with the
calculation of Rosengaard and Johansson [21] and with experimental results.

Calculated magnon spectra for the elementary ferromagnets using g-vectors
in the entire Brillouin zone can be found in the paper by Halilov et al. [22] where
they are also, with good success, compared with experimental data. We here show
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Fig. I. Adiabatic magnon -dispersion relations along high -symmetry lines of Cu2MnAl.

results for a prominent Hensler alloy, Cu2MnΑl. Although this is obviously not el-
ementary and in the literature is considered to be an "ideal local moment system"
we calculated the magnon spectrum using Eq. (11) by freezing the small induced
moments at the Cu- and Al-sites to zero. The results are shown in Fig. 1. The
agreement with the experimental data is only moderate with rather large devia-
tions along the Σ-axis. The reason for this discrepancy is not known at present.

4. Spin fluctuations and the Curie temperature
At high temperatures the spin waves begin to interact and the magnon

picture is to be replaced by a picture of strong long-wavelength transverse spin
fluctuation. This is not the place to present a full derivation of the thermal prop-
erties near the Curie temperature, Τ, which has been given in Refs. [14, 15, 26].
The salient features, however, can be described as follows.

First, the total energy differences from spiral magnetic states are written as

Fitting the total energy differences of the type shown as an example in Fig. 2 sup-
plies the constants 2, α4, ... and the exchange functions j0(q), j1(q), ... of which
only those written out are needed in first approximation. Next, the magnetization
is expanded in terms of fluctuαtions m; k where j labels Cartesian coordinates,

• R being translation vectors. A Hamilton function in terms of the fluctuation pa-
rameters is then constructed whose Τ = Ο average gives the total energy differ-
ences, Eq. (13). Using the Bogolyubov—Peierls variational principle and a Gaus-
sian model Hamiltonian we can then determine the Helmholtz free energy which
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Fig. 2. Total-energy differences for Ni as function of the magnetization, M, for several
values of the spiral vector q (given in units of 2π/a). Polar angle θ = 90°.

supplies all thermal properties. We collect in Table lithe results for elementary
ferromagnets. It is seen that generally the Curie temperatures of the fcc systems
are underestimated, while those of the bcc systems are overestimated. Empirically,
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it is seen that the quantity Σ q ^ΔΕ(ΜS , q, θ = π/2) listed in Table II reproduces
the trend in the experimental Curie temperatures. The so-called number of mag-
netic carriers, q c is defined by means of the Curie constant which is written as
C = (1/3)qc(qc + 2)μ2B/kB, where kB is Boltzmann's constant. Thus the Curie
constant is generally underestimated.

In Fig. 3 we show an example of ab initiο computed thermal properties. We
have chosen here bcc-Co which is not the stable form, but is experimentally pro-
duced by thin-film techniques. We thus predict the Curie temperature of assumed
bulk bcc-Co which, most likely, is an overestimate.

The fluctuations t 2 , l 2 , and p2 depicted in Fig. 3 are defined as

where t and 1 denote the transverse and longitudinal Cartesian coordinates, re-
spectively. In the paramagnetic state t 2 and 12 are degenerate and are, therefore,
denoted by p2 = t 2 = 1 2 . Furthermore, we notice from the inset in Fig. 3 that the
phase transition at the Curie temperature is of first order. This is a defect of the
theory which must be removed in the future. Also notice that the inverse para-
magnetic susceptibility is Curie—Weiss like, as it should be: a serious defect of the
old Stoner theory for band magnetism which predicted a Pauli-like susceptibility
has disappeared.

Fig. 3. Calculated magnetization data for bcc-Co as functions of temperature. Μ is the
reduced magnetization, 12 , t2 , and p2 are the reduced fluctuations defined by Eq. (15).
Insets: free energy for the ferromagnetic and paramagnetic cases (temperature given is
the calculated Curie temperature); inverse paramagnetic susceptibility multiplied with
the saturation magnetization squared, Μ , in mRy.
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Of basic and technological interest are predictions of the magnetic proper-
ties of compounds and artificial structures like for instance multilayers. It is thus
important to extend spin-fluctuation theory to these cases as well. This turns out
to be somewhat more involved since the constrained total energy is now a function
of many more variables than for the case of elementary systems. For example,
the total energy can be constrained separately for each constituent atom which
possess separate spin fluctuations. The problem appears roughly like in the the-
ory of phonons for non-elementary systems where a secular equation determines
the various frequency branches. As an example we show in Fig. 4 the calculated
magnetization and the fluctuations for the compound FeCo. Certainly, the order
of the transition is reproduced incorrectly, but the calculated Curie temperature
is very close to the experimental value (which could be fortuitous). Details of the
theory will be given elsewhere.
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