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We review briefly recent results concerning the stability of para-, ferro-,
and antiferromagnetic states in the Kondo-lattice limit. Both the macro-
scopic quantities such as the specific heat and the electrical resistivity, as
well as the magnitude of the magnetic moment and the mass enhancement
(together with its spin dependence) are discussed.

PACS numbers: 71.27.+a, 71.10.—w, 71.10.Fd

1. Introduction

The heavy-electron Fermi liquid and the Kondo insulating state in the inter-
metallic compounds involving instability of the atomic f-electron shell (4f in case
of Ce or Yb, and 5f in case of U or Np elements), have been modelled with the
help of periodic Anderson model (PAM) or its derivatives for paramagnetic [1],
magnetic [2], and superconducting [3] states. This approach has also been applied
to the paramagnetic Kondo insulators [4]. Such a simple model, particularly in
the version when the hybridization matrix element Vk is the wave-vector-k inde-
pendent (i.e. of the intraatomic character), cannot account for an anisotropy of
physical properties such as magnetization. Nevertheless, it provides some of the
basic features of the heavy-fermion state such as the extremely heavy effective
masses, an almost integer occupancy  (nj 1) of the f level, as well as obtained
very recently [5] almost compensated moments in the antiferromagnetic metallic
(spin-density-wave) state. The pairing due to the antiferromagnetic Kondo-type
interactions [6] or mediated by the related spin fluctuations [7] has also been pro-
posed, although the coexistence of antiferromagnetism and superconductivity has
not been treated accurately from a microscopic point of view [8].

In this brief overview we concentrate on the paramagnetic and antiferro-
magnetic states at the threshold of their stability. In particular, we discuss the
divergent behavior of the contributions due to quantum and spin fluctuations
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when approaching magnetic instability point [9], from the paramagnetic side, as
well as summarize briefly the same point from the magnetic side [5]. Unfortunately,
this type of approach starting from a stable Fermi-liquid (or insulating) state does
not provide any clue into the observed fundamentally new phenomenon of the
non-Fermi-liquid behavior [10], which requires a different type of approach from
the outset (the incorporation of quantum critical fluctuations and/or of the atomic
disorder) .

2. Paramagnetic state and its instability

2.1. Mean-field (saddle-point) solution

As we mentioned above, the discussion of the heavy-fermion properties in
the Kondo- lattice limit starts from the electronic model depicted schematically in
Fig. 1 and represented by the Anderson-lattice Hamiltonian

where c  aá0. are the creation operators of the conduction (c) and localized
(f) electrons, with spin σ, respectively. The remaining symbols are standard [5].
The diffIculty in solving this model is connected with the circumstance that the
magnitude of U 5-6 eV is usually the largest parameter in the system, since
the bare band width of the conduction band is in the range W 1-2 eV, whereas
the position of the bare atomic f-level is ε f = 1-2 eV below the Fermi level μ,
and the magnitude of hybridization is V| = 0.1-0.5 eV in a typical heavy-fermion
material.

Fig. 1. The hybridization processes (f —c mixing): high energy processes
( 

V/(ε j + U - μ)) and the low energy mixing (~ V/(εf - μ)). These processes com-
bined together lead in the second order to the Kondo coupling in the Schrieffer-Wolff
approximation.
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Various method8 of approach have been used in solving this model in the
lattice case [11]. They all converge to the mean-field (saddle-point) solution for
the Fermi-liquid ground state, in which a new energy scale called the Kondo (or
hybridization) temperature Τ emerges, where for finite but large U we have that [9]

where 190 is the density of states in the bare band at the Fermi level, J =
2V2 /[|εf|(U - ^sfj)] is the magnitude of the Kondo coupling between c and f
electrons obtained by Schrieffer and Wolff and ε f is the position of the renormal-
ized f-level. One should note that this result is derived also in the Kondo-lattice
limit, i.e. for (μ - ε f) » ρ0V  2 . In that limit, the deviation from integer occupancy
n f of the f-level is

Moreover, the density of hybridized quasiparticles at the Fermi level is

Thus, since W/kBTK » 1, it is irrelevant what sort of bare density of states p0 is
taken. Hence, one can take it in the simplest form ρ0(ε) = 1/W, for -W/2 ≤ ε ≤
W/2, where W is the bare band width. In such a situation, the gap between the
hybridized (quasiparticle) bands is equal to

where V, as in formula (4), is the renormalized hybridization, which in the limit
U →∞ takes the form V = V[(1 - n f )/(1 - nf /2)] 1 / 2 . Also, from Eq. (4) follows
that 1,/)90≡  m*/m0 = W/(2kΒ ΤΚ ), where m*/m0 is the effective-mass enhance-
ment due to the electronic correlations. One should note that since the density of
quasiparticle states is 1/Τ (cf. Eq. (4)), and the low energy scale of electronic
states is s' ΤK , then the total number of states in this interval is ρ(μ)ΔΕ 1, i.e.
almost all quasiparticles are located in the vicinity of the Fermi level. However,
cautionary remark is in place here: this type of analysis is relevant if the number
of particles per atom n < 2, i.e. when only the lowest quasiparticle band is filled
(the upper hybridized band is empty and there is no electron-hole symmetry, since
εf< 0).

Physically, the results obtained in the saddle-point approximation mean that
for the number of electrons per site n < 2, the ground state is metallic and can
be directly measured from the linear specific heat coefficient, which for a mole of
compound takes the form = 3 Ι

 ,
 where R is the gas constant. For example,

for CeRu2 Si 2 γ = 355 mJ/(mol Κ 2 ) and therefore, ΤK ≈ 80 Κ. On the other hand,
for the system for n = 2 is a correlated band insulator called the Kondo insulator
(a semiconductor at temperature T> 0).
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2 .2. Eƒfect of quantum fluctuatiοns

When we take into account the deviation from the saddle-point (mean-fleld)
approximation the two corrections appear. First of them is due to the quantum
Gaussian fluctuations of auxiliary (slave) boson fields. The second is due to the
spin fluctuations. We characterize briefly the results for each of them (for details,
see [9]).

The contribution to the specific heat (per site) due to the slave-boson fluc-
tuations in the lowest order is

where the renormalized Fermi velocity is v* F = ħF/m**, κ 1 + ο[(m 0 /m*) 2 ],
and the last term is the higher order contribution. The parameter q is the cutoff
frequency and as long as q, « kF , it does not influence much the results. They
correspond to virtual charge excitations only because the Bose fields do not carry
the spin.

The contribution due to the spin fluctuations is more involved. First, we have
to derive effective spin—spin interactions and then calculate the dynamic suscepti-
bility in the random phase approximation (RPA). In the system with ferromagnetic
fluctuations (peaked around the wave vector q 0) we obtain

where

Note that Ι plays the role of the effective local coupling, which is weaker for the
systems with heavier masses. The contribution C diverges when the αF → 0, i.e.
the system reaches the ferromagnetic instability. In the limit (m*/m 0 ) → ∞, we
have that Ιρ(μ) → 1/4, i.e. the system is paramagnetic even though the density
of states at μ is very large, since the effective magnetic coupling is very weak.

A different type of behavior occurs when the mean-field susceptibility is
peaked around the wave vector Q = (Q1, Q2, Q3). Around that point we can
expand the susceptibility as [12]

Then
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where

is the enhancement factor. Again, at the threshold of spin density wave (SDW) .

instability IΧ0(Q) = 1, both terms are divergent (note the absence of Τ3 ln Τ term
in this case).

We now turn to the electrical resistivity. The resistivity is proportional to
the imaginary part of the self-energy Σ and has the Fermi-liquid form

where

The contribution due to the slave-boson fluctuations is

The corresponding contribution due to the spin fluctuations in almost ferromag-
netic systems is

whereas in almost antiferromagnetic systems

Therefore, the total resistivity is

One should note that close to the magnetic instability (αF(ΑF) →0) Κ'varies
considerably, violating the simple Kadowaki—Woods scaling p(ω = 0, Τ) γ2Τ2

 -^

(T/ΤK ) 2 .
In general, the whole meticulously built Fermi-liquid picture break8 down

at the magnetic quantum critical point α F(AF) = 0. However, the perturbative
expansion presented above does not provide us with any clue about the possible
non-Landau (non-Fermi liquid) type of behavior.

3. Magnetic solutions: saddle-point approximation

3.1. Antiferromagnetic metallic phase

The magnetic phases including the Kondo compensated phases have been
recently analyzed in detail in Ref. [5] (for overview of the solution, see [13]). In
this manner, a true Kondo lattice state was achieved for the number of electrons
per site ne = 2 = δ, with δ G< 1. The antiferromagnetic solution is 8table for the
perfectly nested case. This phase comprises the magnetic moment of f-electrons
reduced by the circumstance that they hybridize and the whole system in the
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Fig. 2. Schematic representation of the total compensation of the f-moment in the
impurity-Kondo case (top) and the partial compensation in the Kondo-lattice case (be-
low). The totally compensated case in the lattice case corresponds to the simultaneous
disappearance of the c- and f-electron magnetic moments. The last case takes place for
paramagnetic heavy fermions (bottom).

ground state is a Fermi liquid. Second, the conduction electrons are coupled to the
electrons antiferromagnetically. However, only in the small-hybridization limit this
coupling can be regarded as that of Schrieffer-Wolff type, i.e. V 2 . The effective
situation is reproduced schematically in Fig. 2, where we mark the f-moments as
solid arrows and the opposite conduction-electron polarization as shaded vectors.
One should note that while the carrier polarization (in the orbitally non-degenerate
situation) compensates completely the localized f-moment in the impurity case,
it compensates at most only a half of the atomic moment in the lattice case. The
remaining part of the f-moment is the autocompensation which is complete for
the hybridization Vi exceeding a critical value. This is an intrinsic instability of
the antiferromagnetic Kondo lattice in the ground state against the paramagnetic
metallic state. At the instability point a weakly ferromagnetic phase (with the
polarization m = δ) may become a stable configuration.
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The results discussed above are not in complete agreement with those in
the preceding section, where we have shown that the quantum fluctuation is sta-
bilized if the effective (mean-field) mass is large (nota bene the last conclusion is
in qualitative agreement with the observed experimental trend that the heaviest
heavy-fermion systems such as CeAl 3, UBe 13 , or CeCu6 , which are paramagnetic).
Obviously, to resolve the situation one would have to include the quantum fluc-
tuations in analysis of magnetic phases, which represents a formidable task. It
is also possible that the paramagnetic phase for e.g. Ce systems (containing one
f-electron) may be additionally stabilized by the circumstance that we have more
than one conduction electron per one 4f-electron (i.e. the overscreened situation
in the Kondo-effect language). Such situation requires a separate analysis. For ura-
nium systems such as UPt3 or URu2 Si 2 we have the situation with two 5f-electrons
(5f2 atomic configuration). In that case the Hund rule may drive the system to-
wards magnetism. Obviously, such features are missing in the analysis performed
in our papers [5, 13].

3.2. Kondo insulating state

The most of the above discussion can be applied equally well to the case with
n = 2, when the correlated (Kondo) insulating and magnetic state is formed. Such
system is not a Mott–Hubbard insulator, since hybridization drives the system
towards a band behavior. Indeed, a paramagnetic band insulating state is achieved
for large enough hybridization [5, 13]. Probably, the most interesting feature, which
one encounters in those semiconducting systems, is the fact that the gap disappears
gradually with increasing temperature Τ and vanishes at the temperature Τ0 (we
do not identify this temperature with Τκ , as Τ depends itself on T). Figure 3

Fig. 3. Temperature dependence of the Kondo semiconducting gap: solid line — the-
ory [16], circles — tunneling spectroscopy, squares — Raman spectroscopy, triangles —
infrared absorption (cf. papers grouped under Ref. [15]).
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displays the temperature dependence of the semiconducting gap measured for FeSi
with the help of various techniques [14], whereas the solid lines represent the
theoretical result for ΔG(T) obtained independently [15, 5]. One can say that
the temperature Τ0 represents an instability point of the paramagnetic Kondo
semiconductor. Close to this point ΔG(T) (Τ0 — T). It is difficult to say if the
temperature Τ0 signals a phase transition (at least, in the paramagnetic phase).

4. Conclusions

For the three situations considered here: (i) paramagnetic Kondo-lattice
metal with quantum fluctuations, (ii) heavy-fermion antiferromagnetic with al-
most compensated moments, and (iii) Kondo-lattice semiconductor with a van-
ishing gap, the starting phase becomes unstable. These systems are unstable be-
cause their microscopic parameters (U/W, εf/W, V/W, n) are such that new
energy scale arises characterized by ΤK, I, Τ0 , and the nonlinear molecular field
β3 not discussed here [5]. From the paramagnetic side this state becomes unstable
if kBTK < I; this condition is similar to the Doniach criterion [16]. From mag-
netic point of view, the magnetism disappears when roughly the local molecular
field β3 J. Α coherent picture of the magnetic instabilities from the two sides
(paramagnetic and magnetic, respectively) is yet to emerge.

The microscopic understanding of heavy-fermion superconductivity remains
as puzzling, as it was twenty years ago. We have also omitted the appearance of
the spindependent masses in the applied field [17]; the occurrence of the spin-split
masses provides a test of our mean-field approach starting from either Gutzwiller
or slave-boson approach.
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