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In metallic magnets, scattering from magnetic fluctuations above and
near To may provide a substantial contribution to the electrical resistance
p(T). However, this effect is usually small because the dominant fluctuations
are near q 0, which does not produce substantial backscattering across
the Fermi surface unless 2k F is itself small; such a situation can be realised
in metallically-doped ferromagnetic semiconductors. A simple adaptation of
the theory of deGennes and Friedel shows the low field magnetoresistance
scales with the ratio of field induced magnetisation m(Η) to the saturation
magnetisation msat : Δρ/ρ C(m/mt) 2 , where C ^s x -2 / 3 , with r the
number of charge carriers per magnetic unit cell. Comparison to data on
very different ferromagnetic metals and doped semiconductors is in broad
quantitative agreement with this trend, with the prime exception of the
perovskite manganese oxides, already understood to involve the extra physics
of dynamic lattice distortions. At very low doping, the physics should involve
ferromagnetic polarons, and polaron formation and transport are discussed.

PACS numbers: 75.70.Ρa

1. Introduction

"Colossal" magnetoresistance (CMR) in some manganese oxides (such as
the perovskite La1-xSrxΜnO3 and the pyrochlore Tl 2 Μn 2 O 7) has been found
to accompany a transition from a metallic ferromagnetic low temperature phase
to a paramagnetic high temperature phase [1]. In these materials the electrical
transport is strongly influenced by the degree of magnetic order, and in addition
there is a strong influence from competing charge and orbital order.

The field is very active and there are many aspects to the problem. Here we
shall review just a few topics and comment on some recent developments.

The first question is how large a magnetoresistance can one expect from el-
ementary models of magnetic scattering [2-4]. In the simplest situation, carriers
are strongly scattered by magnetic fluctuations that are enhanced close to the
magnetic Curie temperature Τ. The suppression of the magnetic fluctuations in
a small magnetic field leads to a large negative magnetoresistance above  Τ. This
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magnetic scattering mechanism is not different in principle from that in more fa-
miliar metallic ferromagnets such as Ni and Fe, and other perovskite ferromagnets
(e.g. La1-xCaxCοΟ3), or the doped magnetic semiconductors Ge 1-xΜnxΤe and

Εu1- GdxTe, yet the size of the effect differs by at least an order of magnitude.
It turns out that simple Born scattering can give a very good account of the mag-
netoresistance of many ferromagnetic metals (as already known), but especially
down to low densities when the effects can be very large.

The second aspect refers to the low carrier density limit in these magnetic
models, when the carrier should bind to spin distortions to produce a magnetic
polaron. This is a familiar problem for an antiferromagnetic spin background, but
the case of Tl2Μn2O7 may provide a rare example of the ferromagnetic case.

The third topic to be touched on is the role of charge and orbital order in
the perovskite manganites. Here purely magnetic mechanisms are not appropriate,
because of the strong coupling to local lattice distortions via the orbital degrees
of freedom. At the most elementary level, this can simply be regarded as a com-
petition between the delocalising effects of the electron kinetic energy, and the
tendency to localise into nominally Μn 3+ and Μn4+ ions that is strongly abetted
by the local lattice (Jahn—Teller) distortions of the oxygen octahedra.

2. Magnetic scattering in the BOrn approximation

Scattering from magnetic fluctuations is a component of the electrical resis-
tance. Since the fluctuations at a ferromagnetic transition lie near q ~ 0, they
have usually only a weak effect on transport because it is primarily modes that
can scatter backwards across the Fermi surface that are important, i.e. with mo-
menta of order 2kF (kF = (3π2 n) 1 / 3 is the Fermi momentum in an electron gas of
density n). The obvious and interesting exception is a low density electron system
kF α <ς 1 (where α is the lattice constant), and it is in this low density regime that
the effects are largest. A fuller discussion is given in Refs. [2,3] and here just the
main results are quoted.

Consider a model of a single band of carriers with hopping t coupled to a
ferromagnetic spin model with an exchange constant J

Here σi = ci σ βci β is the spin of the itinerant electron, and Si refers to
the localised core spin.

A simple scaling form for the magnetic fluctuations generates an effective
static potential that scatters the carriers. Thus we regard JF as having indepen-
dent origin, not mediated by the carriers. This is strictly true in some materi-
als (Tl2Μn 2 O7, Cd2Cr2Se4 ) while inappropriate in others (double-exchange and
RKKY magnets). But decoupling the origin of the magnetism from its effects on
transport is reasonable.

The scattering rate, normalised to its high temperature value (corresponding
to uncorrelated spins), is in the Born approximation given by [5, 6]
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where q is the momentum transfer for this on-shell scattering, and χ(q) is the
spin—spin correlation function. The integral is dominated by large scattering an-
gles, and to study trends it is sufficient to replace θ by π in Eq. (1). Then the
magnetoresistances

at a temperature Τ and magnetic field Η*.
We make a simple Ginzburg—Landau approximation for the low-field

magnetic susceptibility in the paramagnetic state, viz. χ -1 (q, Τ, H) a Α(T) +
(qξ0) 2 + [m(H)/msat ] 2 , where Α(T) vanishes at TC . The correlation length «(T) =
ξ0 /Α(Τ) 1 / 2 diverges as Τ →TC;the corresponding divergence in χ is cutoff either
by the momentum q, or by the field-induced magnetisation m(H). The scale msat
is comparable to the saturation magnetisation in a large field. Using Eq. (3), we
get at low fields

provided kFξ(Τ) » 1. This formula depends solely on elementary parameters of the
magnetic system, the bare correlation length (of order the separation between mag-
netic moments) and the saturation magnetisation. The use of the Ginzburg—Landau
approximation for the correlation function will lead to a cusp in the resistance at
Τ, which is unphysical. Α better theory [5] for χ leads to a peak in τ-1 αbove
TC (albeit very close if 2kF « ξ 0 ), but with a similar magnitude and the same
density dependence as our analysis above. For this reason, we restricted our anal-
ysis to data taken in the range 1.1TC < Τ < 1.5ΤC . We remark that one obtains
dp/dT < 0 if kF is small enough, despite the metallic conduction.

Fig. 1. Low field magnetoresistance plotted against scaled carrier density. Open circles
show data from perovskite manganites, and the solid line shows a -2/3 power law.
From [2], where the sources of the data are given.

*This equation refers only to that part of the resistivity arising from magnetic scattering, and
for comparison to data, other processes must be subtracted out.
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Remarkably, it turns out that this scaling works rather well over different
classes of materials, including the pyrochlore Tl 2 Mn 2 O 7 , the spinels CdCr2 Se4 ,
Fe2Cr2S4, magnetic semiconductors EuSe, GeMnTe as well as simple ferromagnetic
metals [2] (see Fig. 1). Of course for the latter the MR is quite small. The range
of carrier density is from 10 -3 to 1.

But a conspicuous failure is for the doped perovskite manganites which have
large values of C together with a large carrier density. This. failure is not due to
the inapplicability of the weak scattering approximation. Recent numerical calcu-
lations [7] of the double exchange model have shown that even with infinite J, only
far into the tail of the band is spin scattering strong enough to lead to localisation
of the carriers. At the concentrations here (0.1 < x < 0.4), these materials would
be predicted to be good metals.

3. Magnetic polaron

Although the magnetoresistance (Eq. (4)) is (in our approximation) indepen-
dent of the coupling constant between the conduction electrons and the magnetic
fluctuations, the resistance itself is not. If the coupling constant were large enough,
the Born calculation would predict a mean free path / that could become arbitrar-
ily short; the result is meaningless if it predicts kFl < 1, as it must at low enough
density [7]. The picture of scattering will be replaced by one of true localisation,
but as we have discussed briefly above this becomes relevant even for very large
J only at carrier densities well below 1%.

Another localising effect at low density will be a tendency to form magnetic
polarons, where carrier hopping polarises a local ferromagnetic cluster of moments
and thereby self-traps [8, 9]. The problem is easiest to analyse when the funda-
mental origin of the magnetism separate from the conduction band carriers, as
in the doped ferromagnetic semiconductors and insulators. Polarons can exist as
well-defined non-overlapping entities provided n' 3 << 1 (or equivalently kFξ <ς 1).
This regime may be reached only at temperatures somewhat αbove TC, even if
kF is small; at temperatures higher still, thermal fluctuations will destroy the po-
laron [2, 9] . Such a localising effect will lead to saturation of the magnetoresistance,
as well as a weakly non-metallic resistivity due to the easily trapped polarons.

A plausible candidate for magnetic polarons in a ferro-magnetically or-
dering background is the pyrochlore Tl2Μn2O7 , which is a low carrier density
ferromagnet (n < 1%) with a ferromagnetic coupling generated principally by su-
perexchange [10-13]. We found elsewhere [3] that for parameters appropriate for
Tl2Mn2O7, the polaron binding energy is in the range of 0.1-0.3 J, not much
larger than ΤC itself. This is consistent with activated transport measured in
Tl2-x Scx Mn 2 O 7 for x > 0.2 being explained by thermal ionisation and retrap-
ping of polarons as the mode of conduction [11].

The phenomenon described above is generic to low carrier density ferromag-
nets above Tc, and somewhat separate from the issue of polaron or "ferron" forma-
tion at low temperatures in the ground state, which is indicative usually of phase
separation between competing insulating (AF) and metallic (F) phases [14, 15].

Ferromagnetic polarons are familiar objects in the low temperature phases
of antiferromagnets, and have been studied carefully in semi-magnetic semicon-
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ductors and rare earth chalcogenides [16, 17]. They were discussed intensively
in the past in the context of the Eu chalcogenides, which have ferromagnetic or
antiferromagnetic couplings depending on the chalcogen, and on the carrier con-
centration [16]. The special feature of the ferromagnetic polarons in a ferromagnet
is, of course, that they are stable only in an intermediate temperature range and es-
pecially not in the low temperature ferromagnetic phase. Since polarons are easily
trapped by disorder, this provides another mechanism for large magnetoresistance
near a ferromagnetic transition.

4. Perovskite manganites, lattice polarons and charge/orbital order

In the perovskite manganites, it has been known for some time that the
carrier density is not the sole determinant of the magnetoresistance [18] and it is
now well established that dynamical electron—lattice interactions that are strong
in a range of composition near x = 0.1-0.2 [1, 4, 19-21].

Because the Mn3+ ion is a subject to a Jahn—Teller distortion of the cubic en-
vironment, whereas the Mn 4+ ion has an empty Eg orbital, there is a competition
between local charge ordering and a uniform ferromagnetic metallic phase, where
the lattice distortions are suppressed. Particularly when the trivalent rare-earth ion
has a small radius, a complete static charge ordering may be observed, often with a
long range ordering of the nominal Mn(III)/Mn(IV) into striped, incommensurate
phases that are insulating [22]. The other extreme is observed in ordered ferromag-
netic metals, when the mixed valence is suppressed. At higher temperatures, the
charge- and orbitally-ordered states will "melt", while retaining the local lattice
deformations and therefore some degree of charge fluctuation; it is in this phase
that the bulk MR is largest. Notice that for the more metallic Sr-doped manganites
(x = 0.3, 0.4), where the lattice coupling is weak, the Magnetoresistance is again
small.

There are complementary viewpoints of the phenomena [21]. In any model
with electron—phonon coupling the properties are determined by a dimensionless
electron—phonon coupling λ = g2/teffΚ, where g is the electron—phonon coupling,
Leff the electronic bandwidth, and Κ the relevant stiffness constant for the phonon
mode. It is well known that there is a rapid crossover from the behaviour at λ < 1
(band transport of carriers with a renormalised mass) to λ > 1 (strong self-trapping
and polaron formation). The ferromagnetic transition induced by double exchange
leads to a renormalisation of the electronic bandwidth t ell = t(cos( θij /2)) because
of the alignment of the spíns; t ell is smaller by a numerical factor of order 0.7-0.8
well above ΤC relative to well below. Consequently there is a decrease in λ as
temperature is reduced through the transition.

In the manganites, the relevant lattice distortions are Jahn—Teller (J—T)
displacements about Μn3+ ions, and large breathing distortions about the Mn4+.
The pure LaΜnO 3 has an antiferrolastic arrangement of J—T distortions, but the
frustrating effect of Μn 4+ reduces the ordering transition rapidly to zero at a
doping of around 20%. Near and above this phase boundary, there must be strong
local distortions, corresponding to a moderate λ, but there must be a range of
doping where the increased bandwidth in the ferromagnetic phase reduces the
coupling enough to lead to band transport. Hence on general grounds one should
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expect a metal to insulator transition accompanying the ferromagnetic order in
a doping range just beyond the concentration where the long-range-ordered J—T
phase is suppressed. This broadly corresponds to what is seen in experiinent.

Such a generic model ignores the cooperative nature of the lattice distortions,
which are surely controlling the behaviour in detail. There is no place in this sim-
ple picture for the charge- and orbital ordering that is prominent in experiment.
Further, because there is always a first-order transition between the metallic fer-
romagnet and the charge-ordered insulator, there is another mechanism for CMR,
due to the coexistence of these two phases [23]. It turns out that coexistence is
very common, and easily tuned by magnetic field [24], pressure [25], and even by
light [26]. Consequently, there are regimes where the metal—insulator transition is
essentially percolative in nature [23].

The two-phase coexistence is generally on a too large length scale to allow for
macroscopic charge segregation, as discussed in models of ferromagnetic polarons,
for example. And it is also not due to macroscopic chemical segregation; the two
phases have an identical chemical composition. One possible suggestion is that
the competing phases arise because of a long-range strain mismatch between the
charge-ordered and metallic phases, and occurs because of "clamping" effects,
familiar in ferroelectric and ferroelastic inaterials [27, 28].

Despite the activity of the past few years, these materials continue to yield
surprises. And while the physical mechanisms are broadly understood, the details
remain elusive for theoretical models.
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