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The spin—orbit scattering of charge carriers is considered as an addi-
tional contribution to the potential scattering. The expressions for the effec-
tive cross-section and the relaxation time for disordered media are calculated.
The results for the Coulomb screened potential are presented and compared
with available experimental data.
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1. Introduction

The theory of electron transport in disordered media such as liquid metals
and amorphous alloys has been considerably developed since the fundamental pa-
pers by Ziman [1] and Faber and Ziman [2]. A very good review of the present
knowledge m this field was given in the paper of Howson and Gallagher [3]. It
is clear that the main contribution to the electrical resistivity in these materials
comes from the elastic scattering of conduction electrons from a random array of
potentials. There are some other mechanisms which can change this simple pic-
ture. One of them is the spin-orbit scattering which is to be discussed in this
paper. It is important to take into account this contribution because it always ex-
ists and becomes significant in materials containing elements with higher atomic
number Z. Many authors consider the inverse spin-orbit relaxation time τSO-1which
measures the strength of the spin-orbit coupling but they introduce τ in a phe-
nomenological way and estimate its value by fitting the theoretical formulae to the
experimental curves for the resistivity or conductivity (see e.g. [4-7]). However,
the modification of the inverse relaxation time 7.-1 due to the spin-orbit scattering
can be calculated from the quantum theory of scattering.
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2. Model of the spin—orbit scattering

Let us consider the scattering of the electron having spin s = h/2 off the
array of the spherically symmetric atomic potentials Va (r— Rj ) located at random
points R2. The full potential which describes the spin-dependent scattering is

where V(r) = ^^ Va (r— Rj ), a is the vector of the Pauli spin matrices, p = — iħV
is the momentum operator, αSO = 4m h2 , and h, m, c have their usual meanings.
The Schrodinger equation for the scattering of an electron from an ion has the
form [81:

where p is the reduced mass of the electron and the ion, ħ2 k 2 /2μ is the energy of
their relative movement and Ψ(r, a) is a spinor

Its general solution for the initial state

can be written as

where 	 ,. is a shin function

We replace the reduced mass (p) by the electron mass (m) henceforth because
we consider the scattering of an electron from an ion at the position which is
practically fixed.

The asymptotic form of the !(r. al can be written as

where Fm, is the scattering amplitude. In the Born approximation we can write

where

The specific form of FmG given by Eq. (8) resembles the fact that the z-component
of the spin of the incident particle does not change due to the scattering from
a spinless ion. Thus the theory presented here can be applied only for materials
where the ions have closed electron shells after giving their outer electrons to the
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conduction band. The differential cross-section for unpolarized electrons is equal
to the squared modulus of the scattering amplitude, averaged over two possible
polarizations

The first term represents the usual potential scattering

where q gives the change of the wave vector due to scattering

3. The influence of the spin—orbit scattering on the relaxation times
in disordered systems

The effective cross-section is a configurational average of the expression (12).
Using the definition of the structure factor for a monoatomic amorphous system

where the brackets denote a configurational averaging and N is the number of
atoms, after some straightforward calculations we can obtain [1]

where Va(q) is the Fourier transform of the atomic potential

and

For the conduction electrons we assume k equal to the Fermi vector kF . The second
term in Eq. (11) represents the spin—orbit scattering. We have done an analogous
calculation and obtained

where Ua(q) is the Fourier transform of the gradient of Va :

Now we can define the total transport relaxation time τ tr :

(V is the volume of the sample), which allows us to calculate the resistivity p:
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where n is the conduction electron concentration. Of course, 1/τtr is a sum of two
contributions: 1/ τFZ and 1/ τSO , coming from the usual Faber—Ziman treatment
and from the spin—orbit scattering, respectively

where

The formulae simplify very much when the scattering potential Va (r) is spherically
symmetric

where j0(qr), j i (qr) are the spherical Bessel functions and n is a unit vector,
perpendicular to the scattering plane.

Using Eq. (19) and denotation

we can write

The expressions (29) and (30) can easily be generalised for two-component liquid
or amorphous alloys

and
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where cα , cβ are the atomic concentrations of α and 13 components. Sαp are the
Ashcroft—Langreth partial structure factors [9]

where Nα and Np are the numbers of atoms of α- and (-type, Rαj and Rβk are
their positions and δQ,0 is the Kronecker symbol. The integrals Iα and Iβ of course
depend on the potential of the specific ion, Vα or Vβ

As an example we consider the screened Coulomb potentials as the scattering
centres in a monoatomic disordered sample

where V0 is a strength of the potential and λ -1 is the Thomas—Fermi screening
radius. Using the explicit expressions for spherical Bessel functions and the recur-
rence relation [10]

for calculation of the integrals (25) and (28) we obtain

Thus the calculation of the relaxation times and the resistivity is straightforward
provided the structure factor S(q) is known.

4. Numerical results

We tried to evaluate the numerical values of the inverse relaxation times τ Fz-1
and τ for a simple model. We assumed the Coulomb screened potential in the
form as above and approximated the structure factor S(q) by a quadratic function

where b is a coefficient of appropriate dimensionality (m 2). We took advantage
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of the fact that for liquid alkali metals 2 kF < kp [11], where k p is the position
of the first peak of S(q), and in this region the shape of S(q) can actually be
approximated by a parabola (see e.g. [12] for liquid Rb). Using this approximation
and defining the dimensionless parameter 1 = λ/2kF we obtained

where

and

where

Now we can calculate the ratio

This ratio is in fact a function of a dimensionless parameter (rS/α0), where rS is
the radius of the sphere of the volume occupied by one conduction electron and
α 0 is the Bohr radius because we can write the parameter 1 in the form

The values of (rs /α 0 ) are well known [13] and we plotted the ratio (44) for the
alkali metals in Fig. 1.

Fig. 1. The calculated ratio τSO-1 /τSO-1 as a function of the atomic number Z for five
alkali metals: Li, Na, K, Rb, and Cs.
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We can see that the ratio defined in Eq. (44) is of the order of 10 -12 . It means
that the spin-orbit scattering gives very small contribution to the total scattering
within this model. It is not surprising because the prefactor in the expression on
the right hand side of Eq. (44) is of the order of (vF /c)4 10 -1 °, where vF is the
Fermi velocity. If we replaced the free electron mass m in αSO by its effective mass
m* then the ratio τ . /τFZ-1would increase by the factor m/m*, e.g. for m* 0.1m
we would obtain τSO-1/τFZ-110-$. It is more realistic approach because the charge
carriers actually move through a disordered system of potentials, not in vacuum,
but the discrepancies between the experimental data for the resistivity of alkali
metals and the values obtained from the Faber-Ziman theory (see e.g. [14]) are
still too big to be explained by this simple model. Perhaps the calculations based
on the diffraction model (which is claimed to be good for liquid alkali metals)
need to be improved first. Experimental data for amorphous alloys confirm our
conclusion that τ SO-1is quite small though the results of various authors differ as
to their numerical values. We give some examples in Table.

We have to keep in mind that there is no direct method of measuring τSO
and everyone has to assume a specific theoretical model to estimate its value from
experiment. Of course, the Faber-Ziman model in its primordial form cannot be
applied for the materials listed in Table. The quoted authors estimated it from the
weak localisation theories.

5. Conclusions

The contribution of the spin-orbit scattering to the total scattering of charge
carriers in disordered media can be calculated within quantum theory of electron
transport based on the Faber-Ziman diffraction model. We obtained general for-
mulae in the first Born approximation for any position-dependent potential and
analytical expressions for the Coulomb screened potential. The spin-orbit contri-
bution to the resistivity calculated for liquid alkali metals turned out to be very
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small. It can be explained taking into account that the spin—orbit interaction actu-
ally is a relativistic effect. Thus the correction to the scattering potential is of the
order of (vF/c) 2 and to the effective cross-section is of the order of (vF/c) 4 . The
experimental data for amorphous alloys of metals other than alkali ones suggest
that this contribution is essentially larger. Our work shows that more advanced
quantum theory of spin—orbit scattering is needed to explain this enhancement.
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