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The new algorithm for the Monte Carlo simulations of polymer lattice
chains was developed. The model chains were constructed on a simple cubic
lattice. The simulations were carried out on chains with and without excluded
volume effect using the Metropolis scheme. The basic concept of the new
algorithm is the multi-bond modification of the chain conformation instead of
applying the classical set of elementary micromodifications. The correctness
of the algorithm was verified by studying both static and dynamic properties
of the chains. The new algorithm was found to be 3 to 8 times faster than
the classical one. -

PACS numbers: 02.50.Ng, 61.25.Hq

1. Introduction

The idea of an algorithm used for the simulation of lattice polymer models
has been investigated since the pioneering works of Stockmayer and Verdier [1] who
introduced the concept of micromodifications in the polymer simulation method.
This method was later modified and extended to other quasi-crystalline lattices
[2, 3] and to polymer chains with different topology [4].

Many new ideas have been introduced leading to real acceleration of the
simulation processes and enabling one to study long-time dynamic properties of
polymer systems [5-9]. However the existing methods do not lead to the final
answers which have been asked many times; e.g. whether or not the reptation
mechanism dominates in the chain motion or what are the concentration depen-
dencies of polymer dynamics [2, 10]? The answers to these questions can be given
by performing large-scale simulations of polymer systems. It is evident that the
fast algorithm would accelerate those time consuming simulations.
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The presented investigations were made using the model polymer chains on a
simple cubic lattice. The chains were constructed taking into account the excluded
volume effect without long-range attractive interactions (athermal chains). Chains
with no excluded volume were also simulated for comparison as well as for checking
the validity of the algorithm. The simulations were performed on linear chains
consisting of N = 50, 100, and 200 beads. _

The classical simulation algorithm used was as follows [2, 8, 11]. During the
simulations the chain was modified according to the algorithm by means of the
Monte Carlo method and this process was repeated many (order of 106) times.
The set of elementary micromodifications consists of [8, 12]:

1. end of chain modifications,

2. 2-bond kink motion,

3. 3-bond kink motion,

4. 3-bond cranckshaft motion.

2. The simulation algorithm

Figure 1 shows the idea of micromodification enabling one to change the local
conformation of the chain. The process of changing the position of chain bonds was
repeated many times — the time scale was defined as proportional to the number
of attempted micromodifications per chain length N. As was proved, all other
motions of the chain are combinations of those elementary modifications [2, 3, 13].
Time unit corresponds to one attempt of every kind of micromodification per one
polymer bead. .

3-bond modification (planar)
3-bond modification (90 deg) %

end modification

2-bond modification

Fig. 1. Scheme of the idea of changing the chain conformation by means of micromodi-
fications in the classical Monte Carlo algorithm for a simple cubic lattice. The full circles
represent the old and empty circles represent the new positions of chain beads.

In the proposed algorithm the classical set of elementary motions was re-
placed by the procedure which enables one to modify the large portion of the
polymer chain. The length (number of bonds) n of the chain that is a subject to
a substitution was chosen as n = 6. The choice of n = 6 was done with respect
to the reasonable volume of the set of all possible 6-bond random walks which
could be applied during the modification of the existing chain. The larger value
of n (e.g. 8, 10 and so forth) would obviously accelerate the dynamics of the sys-
tem, however one should expect that the checking of the non-physical motion can
be time-consuming as well as the ratio of acceptance of the new configuration can
be low. The optimization of such case will be the subject of the forthcoming investi-
gations. Applying the simple idea of the large-scale modification one should realize
that there exists the possibility of topological obstacles that could occur during
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the simulation. Such traps would involve the chain into non-physical modifications
and therefore lead to false results. The proposed technique enables one to exclude
such cases and obtain a correct dynamics of the system under consideration.

In order to understand the problem of the topological traps one should an-
alyze the scheme presented in Fig. 2. The scheme shows a fragment of a chain on
a simple cubic lattice (bold line). Now, let us suppose that the fragment of the
chain located between beads k and k + 6 undergoes the elementary motion and
the resulting new conformation of this fragment is shown by the dotted line. The
basic assumption of such a process is that the connectivity of the chain as well
as the geometry of the lattice is maintained during the process. In order to fulfill
these requirements there must be no topological obstacles like one shown in Fig. 2
— the vertical fragment of the chain which stays unchanged during the process
forbids the formation of the new structure. In order to detect the possibility of
occurring of such obstacles we developed the procedure which finds whether or
not such a situation can happen. The idea of the detection is simple — one has
to check whether or not there are points which can be potentially occupied by a
distant (along the chain contour) fragment of the chain and therefore, could block
the change of the fragment of the chain into new conformation. Such a point was
denoted by X in the scheme (Fig. 2). The detection of the points, which might
cause the intersection, was done by the inspection of the “loop” consisting of the
“old” and “new” fragments of the chain. Then the projection of the loop on the
three planes zy, £z, and yz was done which easily enabled to check whether or not
there are any “empty holes”, potentially occupied by other chain beads. Should
the “holes” be unoccupied — the new conformation was accepted, otherwise it
was rejected and the procedure was repeated.

Fig. 2. Scheme of the concept of multi-bond modification of the chain. The X repre-
sents the topological obstacle, which can occur during the modification. The solid line
represents the old and dotted line represents the new positions of the chain.

The procedure of the chain modifications was as follows:

a) at first one has to pick at random the bead k of the chain,

b) the fragment of the chain consisting of bonds located between the & and
k + 6 beads is temporarily removed,

¢) the new 6-bond fragment of the chain is picked at random from the set of
all possible subchains that have the same end-to-end vector 7 x4,

d) then the new 6-bond subchain is built into the modified chain and the
excluded volume condition (double occupancy of the lattice points) is checked
when necessary; should the test be positive, one has to start the procedure of
verifying the topological obstacles during the replacement process,
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e) the lattice points occupied by distant (non-bonded) fragments of the chain
causing the topological obstacles are detected and the occupancy test is performed,

f) if the occupancy test (e) is negative, the replacement of the new 6-bond
fragment of the chain becomes permanent and the procedure is repeated from (a).

Chain ends also underwent 6-bond micromodifications but the value of vector
71 k+6 does not affect the choice of the new end fragment. Time unit was defined
in a similar way as in the classical algorithm: it corresponds to one attempt of
chain modification per one polymer bead. '

3. Results and discussion

The static properties of the chains with and without the excluded volume
effect were calculated. The values of mean square end-to-end distance (R?) as well
as the mean square radius of gyration (S?) were calculated. The latter parameter
was calculated according to the definition

(8%) = ifj<<r~—r 2)
N .=1 [ cm )

where the averaging is over the Monte Carlo steps and »; is the coordinate vector
of the i-th bead, rcm is the coordinate vector of the center of mass.

The values obtained are exactly the same as those obtained in the simulations
conducted by the classic algorithm. Parameters (R?) and (S?) scale as N1:1¥ and
N1 for the model with and without the excluded volume respectively, which is in
perfect agreement with previous findings [3, 8]. Also the calculated ratio (S?)/(R?)
gave the correct values 0.167 and 0.157 respectively [4, 12].

In order to confirm that the proposed algorithm could be useful in the large
timescale simulations of the polymer chains it was essential to check whether it
produces the correct time-dependent (dynamical) results. In order to test the
presented algorithm we performed the calculations of autocorrelation functions,
namely a center-of-mass autocorrelation function gem(t), an average bead auto-
correlation function g(t), and a single-bead autocorrelation function g;(¢) defined
as follows:

gem(t) = ([rem(t) — Tcm(o)]z):

1 N
9(t) = & Y ([r:(®) = ri(0)],
i=1
gi(t) = ([r:(t) = r:(0))?),

where »; denotes the Cartesian coordinates of the i-th polymer bead and mcp
denotes the center-of-mass of the polymer chain.

The example of these functions is given in Fig. 3 and 4. g (t) and g(t) are
plotted against time ¢ for a chain consisting of N = 50 beads without and with
the excluded volume effect respectively. The plots were made for the simulations
performed according to the classical as well as the new algorithm. One can notice
the similar shape of the plots obtained from the two algorithms. Also the slopes of
the g(¢) and gem(t) functions in both cases exhibit the correct values: the average
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Fig. 3. Plot of autocorrelation functions g(t) and gem(t) vs. ¢ for chain consisting of
N = 50 beads without the excluded volume. The results were achieved by the means of
the classical (class) as well as the new algorithm (new).
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Fig. 4. Plot of autocorrelation functions g(¢) and gem(t) vs. t for chain consisting of
N = 50 beads with the excluded volume. The results were achieved by the means of the
classical (class) as well as the new algorithm (new).

bead autocorrelation function has two different regimes; the center-of-mass auto-
correlation function exhibits a constant slope in the whole range of the simulation.
The same results were obtained for chains with the excluded volume effect (Fig. 4).
The scalings are very close to the Rouse model predictions where g(t) scales as
N2 and N1, and gem(t) scales as N1, The scaling obtained from our results shows
that our simulation obeys the scaling law and can be used in investigations of the
dynamics of polymer chains [2, 12-14].

Another test of consistency of our method was done by calculation of the
self-diffusion coefficient D according to the Einstein formula D = gem(t)/6t. Ac-
cording to the well-known method [2, 12] we determined values of D from the
data taken from the window 2(S5?) to 10(S5?), where the dependence of gem(t) vs. ¢
is linear. Figure 5 presents the log-log plot of the self-diffusion coefficient D vs.
number of polymer segments N — 1 for the chains with the absence of the excluded
volume effect. The scaling from our data yielded (N — 1)~1-06£0.07 which is in per-
fect agreement with the theoretical predictions for the Rouse chain [2, 3, 10, 14]
where D ~ (N —1)~1. '

The last test concerned the single-bead autocorrelation function g;(¢). In
Fig. 6 we present the plot of g;(t) versus the number of the bead 7 for the case
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Fig. 5. Plot of the diffusion constant D plotted against the»number of beads of the
chain N — 1 — the results are calculated for the case of non-excluded volume simulation

using the new algorithm.
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Fig. 6. Example plots of the single bead autocorrelation function g;(¢) versus the bead
number ¢ — the solid symbols denote the new algorithm, open symbols show results
for the classical simulation, non-excluded volume. Data collected for N = 100, time
1 = 2500 (classical) and ¢ = 800 (new algorithm). '

of N = 100. One can observe that the shapes of the plots are the same for both
algorithms studied. Their shapes are also close to that of the Rouse model, which
predicts the parabolic dependence [12, 14]. This result confirms that the frequency
of micromodifications and mobility of all beads are proper in the new algorithm.

In order to compare the efficiency of both, the classical and the new fast
algorithm we considered the center-of-mass autocorrelation functions obtained by
both algorithms. The estimation of the computer time required to obtain a certain
displacement of the chain enables one to compare the efficiency of both algorithms.
The efficiency of the new algorithm was estimated for two cases: the simulation of
polymer chain with and without the excluded volume effect. The latter case does
not require the execution of the procedure checking the presence of a topological
trap and therefore is much faster. It appeared that the new algorithm is about
3 times faster in the model with the excluded volume and 8 time faster without
the excluded volume.

From the results of the above investigations one can conclude that the pre-
sented algorithm does really accelerate the simulation process of polymer chains.
. We expect that the further improvements of this method as well as optimization
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of the length of the fragment of the chain, which is used in the replacement pro-
cedure, would make the proposed algorithm more efficient. The application of the
new method for more complicated systems, such as polymer melts and concentra-
tion dependencies, are in preparation. The algorithm can also be useful for the
investigations of the influence of the polymer entanglements on the dynamics of
the systems as well as to give some clues which can answer the questions on the
mechanism of polymer chain motion.
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