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The phase diagram of strongly anisotropic two-axis ferromagnet at ar-
bitrary orientation of external magnetic field is built. It is demonstrated that
together with a ferromagnetic phase there is possible the existence of phases
with a tensorial order parameter: quadrupolar or quadrupolar-ferromagnetic
phases. Spectra of bound magnetoelastic waves are investigated. Besides it
s demonstrated that at large enough magnetoelastic interaction there is
possible an active interaction of a magnetic subsystem with longitudinally
polarized acoustic mode which becomes a soft mode at the point of orienta-
tional phase transition.

PACS numbers: 75.10.-b

1. Introduction

It is well known that the account of magnetoelastic (ME) interaction results
in a series of essentially dynamic effects in the vicinity of reorientation phase
transitions (RPT), such as a softening of a spectrum of transversally polarized
phonons and emerging of a ME gap in a magnon spectrum [1, 2]. These effects are
well enough investigated in the framework of phenomenological description [1, 2].
However, such way of description based on the application of Landau-Lifshitz’s
equation and the equations of the theory of elasticity is limited to the condition of
smallness of temperatures (T' <« T¢, Tc — Curie’s temperature) and small values
of one-ion anisotropy constants (OA).
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Recently, large interest has been evoked by the investigation of magnetics
with more complex anisotropies than one-axis one, whose constants are compara-
ble or even greater than a constant of exchange interaction. In such systems the
realization of purely quantum effects is possible [3, 4], whose presence can essen-
tially influence the dynamics of the system. The account of ME interaction in such
systems can result in a number of interesting effects. Thus, there is a problem of
construction of the microscopic theory of bound ME waves which enables us to
take exactly into account as large OA as ME interaction. It is possible to solve
this problem using the Hubbard operators [5, 6].

2. The dispersion equation of a two-axis ferromagnet

As the system in study we shall consider a two-axis Heisenberg ferromagnetic,
in an external magnetic field H parallel to the OZ. The Hamiltonian of such system
can be written in the following form:

He-HY S ﬂz(s;z)? T+

——ZJ (n—n')SpSp +V°Z Y uii(n) + n1 ZS;S£Uij(n)

n, n’ n,%,J

+/d7’ %;“?:'*‘/J;u?k g | (1)

where f§; is the constant of OA; J(n — n’) > 0 is the exchange integral; v; is the
constant of ME exchange interaction; A, u are the elasticity moduli.

We shall carry out calculations in terms of the Hubbard operators. For sim-
plicity we shall take a magnetic ion spin S = 1. The following scheme of calcula-
tions, however, is valid at S > 1.

Separating in the exchange part of (1) mean fields (S%), connected with the
ordering of the magnetic moment, for a one-site Hamiltonian Ho(n) we obtain

Ho(n) = ~H5* + A5y 4 Bz Peygrye 4 sy

+ﬂ3§ﬂ2(5’+5-+5 §+) + US4+ (S7) N (uso — uyy)

HEHS™ + 575 ) (o + uyy) + 4(S*) s |

+2[(S*S + 525 )ut + (575 + 557 3], (2)

where H = H + J(0)(S?); St~ =57 £iSY, ub~ = up, + 1 iuy,. Hamiltonian (2),
expressed in terms of the Hubbard operators, built on eigenfunctions of the oper-
ator

D= T+ s+ 2Py g (5o Bt B shge 5
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has the form

Ho(n) =Y (ZAMHM ¥ EAQH“) (3)

n
Here H,jy = XMM are diagonal Hubbard’s operators, M = —1,0, 1, « are corre-
sponding root vectors. Solving Schrodinger’s equation with Hamiltonian (3), we
shall obtain the energy levels of a magnetic ion with the account of ME interaction

261 + B2 + v .
Ey = ——1"72_133 + _éo_(ug'c + ugy + 2“22) - %’
B2 + f3
Ey = — + vo(ul, + ugy), (4)
261 + fa +
E—l = IBl fz IBB + 1/70(“27: + ugy + zugz) + %’
where
x> = [2x0 — vo(ul, — ud,) sin 260)% + 13 (ud, — ul,)? cos? 26,
X%:—H—Q-I—EZ, ﬁ: '83-—;—-'3—2) cos.():— A —=. (5)
2x0(x0 — H)

The spontaneous deformations uf; are determined from the condition of a minimum

of the free energy density F' = Fo—T'In Z, where Fy is the density of elastic energy
of the system, Z = 3", o _;exp(—En/T) is the partition sum.
The Hamiltonian Hy is a nondiagonal one in the basis of eigenfunctions of
the operator L. To diagonalize it we shall introduce the new Hubbard operators
YM M= Wn(MI)M (M) (YnM = Y1),
constructed on eigenfunctions ¥, (M) of Hamiltonian (3)
W (1) = cos 80, (1) + sin 6%, (—1), ¥, (0) = ¥, (0),

Up(—1) = sin W, (1) — cos 6@, (—1), (6)
where
Vo (Ugathyy) cOs 20
V2x[X = 2x0 + 2(use — uyy) sin20]
The relation of spin operators with the “new” Hubbard operators is as follows:
St =V3cos B(V10 = YOy 4 VEsinB(¥; 0+ YY), S = (S)*,

Sz = cos 20(Y,E — Y, +sin 20V, L+ Y7, §=6—06. 7

Representing components of tensor of deformations as u;; = uf +uE]), where

cos b =

uz(-n is the dynamic part of the tensor of deformations describing the oscillations
of a crystal lattice and quantizing the dynamic part in a standard way [7], from
Hamiltonian (3) we shall receive the Hamiltonian describing processes of transfor-
mation of magnon to phonon and vice versa

Ho= 0 (S P + 3 PYE),
n M «
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where

1
Prrta) = 7 2 (o + %, )T 0, ),
¢A

bt, \ (bgx) are rising (lowering) operators of phonons with polarization A;

M () (g, A) are amplitudes of transformations.
The spectrum of elementary excitations is determined by poles of Green’s

function, which in our case looks like
G (n, 70/, 1) = —(TY,2(1)Y,5% (7).

Here T is a time-ordering operator, Y,%(r) is the Hubbard operator in the Heisen-
berg representation, and the averaging is made with the Hamiltonian H =
Hin + Hy. We shall carry out all further calculations in a mean field approxi-
mation. The equation for Green’s function is of Larkin’s equation type

Gaal(k,wn) - Zaal(k,wn) _ J_g‘_’lzaal(k,wn)AquBz{szo:za’(k,wn)

+ 20 (k, wn )T~ (k, \) Dy (k, wn )T (—k, A)G***' (k, w,), (8)
where £ (k,w,) is nonreducible (by Larkin) part, Dy(k,ws) = %‘(}zﬁ(% is
Green’s function of a A-polarized phonon with the dispersion law wy (k) = cak,
¢y is the sound velocity, and columns A%, B¢ have the form

(). =), =(67).

o= (B), me= (), == (16).

The functions 71 (y(«) are determined by the relation of the spin operators with
the Hubbard operators [6], and have the form (see (7)):

(1) = vy (a2) = —sin 28, yj(e:) =0, i=3,4,5,6,
yi(en) =vi(ez) =0, vi(as)=7vL(as)=V2cosb,

v1(0g) = =71 () = V2sin 6.
The root vectors a; have the following components:

a1 = (1,0,-1)=—a3, az=(1,-1,0)=—a4, as5=(0,1,-1)= —as.
Due to the split dependence of Eq. (8) on « it is possible to solve it, and taking
into account that in the mean field approximation T (k,wy,) = 64ar G (wn)b(a),
where G§(wn) = [iwn + (aE)]! is zeroth Green’s function, b(a) = (aE), we
obtain the dispersion equation of bound ME waves

J(

det| 5 + T8 G (b))

+£(2£)BOT_°‘(IC, /\)Gg(wn)b(a)Tﬁ(~k-,)\/)Gg(wn)b(ﬂ)aij(a,ﬂ)H =0. (9)
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In Eq. (9) we have introduced the following designations:
D)‘(L wn)
1= QxnDar(k,ws)’

- @an = Tk, ) GG (wn)b(@)T~%(k, X),
[ 2y ()1 (=8)
aij(a,f) = | 2vi(a)y(-B)
271 (=) (—B) u( a) () 71 (=a)yL(=B)
b(ar) = [exp(~PE1) — exp(—BE_1)]/Z = —b(az),
b(az) = [exp(~PBE1) — exp(—BEq)]/Z = ~b(u),

b(as) = [exp(—BEg) — exp(—BE-1)]/Z = —b(as),
where Z is the partition sum.

The dispersion equation (9) is valid at arbitrary temperatures up to Curie’s
temperature (excluding fluctuation area, which, naturally, is small enough), and
also at any values of material constants (f;, ao, Jo)

By =

-3. Spectra of bound ME waves

Let us analyse Eq. (9) for the most interesting case, when a wave vector
k|| OY. In such geometry the only nonzero components of a unit vector of polar-
ization of phonon are €Y, €%, ef, and the dispersion equation (9) breaks down into
two equations separately determining spectra of “longitudinal” and “transversal”
oscillations, accordingly

14 z22 Z23

1+
( 1) z32 14 233

=0, (10)

where
Ty :'Z‘%@“[ng(a)az‘j(a) + BoG§T = (k)b(c)GHT? (—k)b(B)ai; (o, B)).

The transformation amplitudes generally have cumbersome expressions, therefore
we shall give only these of them, which will be necessary for us for the further
calculations. In the given geometry we have:

for 7-polarized phonons

Tk, ) =T**(k,7) =0,

T3 (k,7) = %Tg(cos 0 +sinf)eik = =T (k, ),

T (k,7) = —%To(cos § —sinf)ezk = —T°(k, ),

for l-polarized phonons

T (k1) =T (k1) = —i%éTo cos 2562{16,
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To = exp (ikn)/\/2mwy (k). Such “splitting” of Eq. (9) is possible, since in our
case yL(a)y)(8) =0 for all &, G.

Let us consider further a low-temperature limit, i.e. 7" < T¢c. Besides we
shall take into account that the ferromagnetic phase (FM), which the system in
study is in, is stable in these two cases

L. B3> p1 > P, 2. 61> B3> Pa.

These two cases actually correspond to the rotation of a magnetic field: in
the first case the field is perpendicular to the easy axis and in the second — to
the easy plane. Let us consider these two situations in detail.

Consider the first case, when the constants of OA satisfy the inequality
B3 > B1 > Bo2. In this case the magnetic field H is parallel to the “mean” mag-
netization axis. Solving the dispersion equation (10), we shall obtain spectra of
”longitudinal” and ”transversal” branches of excitations, which in our geometry
have the form

. EH(IC) = \/El—l[El—l + 2J(k’) sin? 267],
E1-1 + 2J (k) sin? 26 + 2ag cos? 20
Ei_1 +2J(k)sin® 2§

(11)

wij (k) = wi (k)

e (k) = \/[Bro + J(k)(1 -+ sin 20)](Exo + J(6)(1 — sin 2)],

2N 20m E1p+ J(k)(1 — sin 20) + ay(1 + sin 26)
W () = w2 (k) asl , (12)
E1o+ J(k)(1 — sin 26) :
where E;; = E; — E; (i,7 = 1,0,=1); ao = v2/2p, a1 = vZ/2u, wi(k) and
w,(k) are spectra of longitudinally and transversally polarized non-interacting
waves correspondingly.

Let us consider the case when the largest parameter of the system in study
is the constant of exchange interaction (Jg > i, a;, H), i.e. the case of small OA.
As we study the system at low temperatures, it is possible to account only the
lowest energy level, which in this case is equal to F; and is determined by the
expression (4).

In this case, the expression for (S7) is

and 7-polarized sound wave interacts with the magnetic subsystem. The spectrum
of quasiphonons, as follows from (13), assumes the form
2
20k = w2(k ak’+ H - H,
(k) = W2() e (13)
where o = JoRf, Ro is the radius of interaction, H, = £17£2,
As follows from the expression (13) in a long-wave limit (ak? < a;) at

H = H. the quasiphonon branch of bound ME waves softens, i.e. its spectrum
assumes the form

W (k) = w2(k)

ap

(14)
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It testifies to the fact that at H = H. the system undergoes orientational phase

transition (OPT). With this in the spectrum of quasimagnons there appears the
ME gap

€1(0) = \/2a:1 5. (15)

The longitudinally-polarized sound wave, as it follows from (11), practically
does not interact with a magnetic subsystem and its spectrum is

This situation corresponds to a well investigated case of weakly anisotropic
easy axis ferromagnetic. Our results, in particular concerning the field OPT, are
in good agreement with the results obtained with the use of the Landau-Lifshitz
equation and the equations of the theory of elasticity.

It is of interest to investigate the behaviour of the system, when the constants
of OA are comparable or even greater than the constant of exchange interaction.
In this case (see, for example, [3, 4, 8]) the manifestation of quantum effects, such
as “quantum reduction of spin” is possible.

However, the investigation of these effects is impossible on the basis of phe-
nomenological equations, since 1t requires the precise account of OA and ME in-
teraction. _ 5

We assume that B3 > 81 > B2 and 8 > Jo, H. In this case, as well as in the
previous one, the lowest energy level is Fy. However, the mean magnetization, as
follows from (7), will be smaller than the greatest possible value (S*) = 1, and is
determined by the expression (S?) ~ H/E

The reason of this reduction lies in the structure of the operators of OA- and
ME-interaction in Hamiltonian (2). The operators link the state |1) and |—1), and
the ground state of the system is a superposition of states [1),] — 1). The greater
the value of 3, the greater the contribution of the state | — 1), which results in the
“quantum reduction” of (S%).

As the analysis of spectra of bound ME waves shows, in this case there are no
values of the magnetic fleld, at which the quasiphonon or quasimagnon branches
soften. It means that the system does not undergo the OPT, and (S?) is always
parallel to the OZ axis and decreases in absolute value in the process of reduction
of the magnetic field H value.

In our opinion, the interesting and not sufficiently enough investigated situa-
tion [9] is the case of large ME exchange constant. We still assume that §3 > 61 >
(Bo. Besides E > Jo, H, but ag > f. At the first sight such situation takes no place
for real magnetoelastic systems. However, as it was shown in recent researches
[9-11], in rare earths oxides (in particular, in vanadates RVO4, R = Pr, Nd, Tm)
the parameter of ME exchange interaction is comparable or even greater than the
exchange interaction. Besides, the nature of OA and ME is the same: spin-orbital
interaction. Therefore it is reasonable to model such situation.

In this case the transversally polarized sound mode does not interact with the
magnetic subsystem. However, a longitudinally polarized sound wave intensively
interacts with a high-frequency magnon branch.
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The lowest energy level will be Ey, and the expression for (S*) assumes the
following form:

(57) ~ = (1—‘77).
B+ ao 5
It is in this case, as well as in the previous one, that the effect of “quantum
reduction of spin” takes place, however, the parameter of ME exchange interaction
plays the role of an “effective anisotropy” and essentially reduces (S*). The reason
of this reduction is the same as in the case of large OA.
As follows from (11), the spectrum of longitudinally polarized quasiphonons

looks like
s 2 ak®+ H? - HY

while the spectrum of a high-frequency (relaxational) quasimagnon branch is

ey (k) = 2\/ok? + H + H2 + ao(S)(F + ao). (17)
In (16) and (17) the following designation is introduced:

Hes =237 (a0 - 225). - (18)

As it is evident from (16) and (17), at H = H¢ (in a long-wave limit
ak? < ap(S)) the spectrum of longitudinally polarized quasiphonons softens

ak?
ao(S)c

and in the spectrum of relaxational quasimagnons there appears a ME gap

£1(0) = 2/ a0 (S)e (B + ao),

where (S)e = (S)|g=H., -

It is necessary to note that such spectral dependence is possible, as it fol-
lows from (18), only at ap > 1.754. If this is not so we come back to the earlier
considered case of large OA. N

Thus, at H = H¢; and ag > 1.758 > Jy the system undergoes OPT, con-
nected with the rotation as well as with the reduction of the module (S}, but under
this conditions, the longitudinally polarized sound wave becomes a soft mode in-
teracting with the relaxational magnon branch. We shall notice that for one-axis
magnets the similar effect is not observed. It is connected with the structure of
functions 7| (@), determining the relation between spin operators and Hubbard’s
operators, as well as with the structure of amplitudes of transformation.

Consider the spectra of bound ME waves in a strongly anisotropic two-axis

"FM (B; > Jo), when the constants of OA justify 8; > Bz > fs.

As it was shown in papers [3, 4, 8], when the energy of OA is compara-
ble with the exchange energy, the existence of new phases with a tensorial or-
der parameter is possible. At fields Ho and H.s there occurs the OPT from the
quadrupolar-under QU-phase characterized by the tensorial order parameter, to
the quadrupolar-ferromagnetic (QFM) (angular), and from QFM to FM, in which

(16)

wi (k) = wi (k)
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the magnetic moment is directed along the field. Let us consider the spectra of
bound ME waves in the following intervals of fields: H < Hey and H > Hes.

At H > Hc the mean magnetization is directed along the field. The ground
state in this case is ¥, (1), and the lowest energy level is E;. The value of the mean
magnetic moment is (S) ~ 1.

The spectrum of quasiphonons in this phase is

5y 2y ak?+ H — Heg

W1 (b) = wA(b) g T
and in a long-wave limit at H = Hes = 8 = (261 — B3 — B2)/4 it softens. In
the spectrum of quasimagnons there appears the ME gap (at H = Hcz): €, (0) =

A/ 2(1.1J0,8/ﬂ.

Let us consider now the spectrum of ME waves at H < H.s. In this case
there takes place an inversion of energy levels, and as follows from (4), the lowest
level of a magnetic ion is Fy. As follows from (7) the magnetic order parameter
(S*) = 0, but the tensorial order parameter 3((5%)?) — 2 # 0. Thus, the system is
in a QU-phase with a ground state ¥(0). In this case the mechanism of realization
of a QU-phase differs from the corresponding mechanism at “quantum reduction
of spin”. It is connected with the difference of corresponding ground states.

H FM
HcS
QFM
ch
QU
0 T 7

Fig. 1. The phase diagram of a strongly anisotropic two-axis ferromagnet at H || OZ.

From Eq. (9) it follows that I- and ¢-polarized sound modes do not interact
with the magnetic subsystem, and for the spectrum of 7-polarized quasiphonons
we obtain

9y 2y Ok HE - H?
wl(l“) - wr(/")akg + H022 _ Hz -{-61 ’
where @ = 2a;(8 — ,E—— 21y), Hea = \/(ﬁ—#ﬁ— 2a1)(B ~§— 2Iy). At H = Hey
in the spectrum of quasimagnons there appears a ME gap

e1(0) = \/2a1 1B (6 ~ B)/B.
The phase diagram of the system for the described situation (in variables
(H,T)) is given in Fig. 1. Similar phase diagrams for one-axis ferromagnets with

(19)
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large OA were obtained in [3, 4]. As is obvious from the phase diagram, at H = Hc3
the system undergoes the phase transition from FM to angular (QFM) phase, and
at H = H¢p, from QU-phase to QFM.

4. The phase diagram of a two-axis ferromagnet

Let us consider now the case when the magnetic field is arbitrarily directed
in the plane ZOX, and obtain the phase diagram of the described system in such
geometry.

Let us assume that the magnetic field lies in the plane ZOX at an angle «
to the OZ axis. The limiting cases of such geometry were considered previously
(¢ =0, @ = n/2). We also assume that OA is great (B > Jo). As earlier, we shall
COl’lSIdeI‘ the case of low temperatures.

Let us rotate the system of coordinates around the OY axis by an angle « so
that the new axis of quantization OZ’ (OZ' || H) becomes parallel to the vector of
magnetization. In this local system of coordinates we introduce new spin operators
52,595z in terms of which the one-site Hamiltonian has the form

Ho(n) = ~H + ZH(F) + 22§07 + (5

+ﬂ — 5 sin 2a(5° 5% + 5% 5%), (20)
where By = 5 0032 o + B3sin® o, By = B, sin® a + B3 cos? av.

Expression (20) formally differs from the one-site Hamiltonian (2) by the
presence of the last term, proportional to sin 2«.. Therefore if we restrict ourself to
the cases @ — 0 and @ — 7/2, we come back to an earlier examined situation (see
Sec. 3), with formal replacement 83 — By and 3 — Bs. The phase diagram of
the system in this case (in variables (H;, H,)) is given in Fig. 2. Line 1 separates
FM- and QFM-phase. This line passes through the point H.s, through the point
Hy, = %(Hc.?;)s/z, the tangent to this line in the point O is determined by the
equation cos2c = —Jo/f', where ' = &}&. In the case cos2a < —Jo/f', the
system is in a FM-phase. ’

Line 2 separates QFM- from a QU-phase. This line passes through points
Heo, and

. ; T
Hy, :sina\/<'81 o a+igsln a— b ——2a1> (28 cos 2 — 2J4)

(sin2 o= % (1 - 2312_’72—)) and the equation of the tangent to line 2 in point O

has the form cos 2« = Jo /8.

If an angle of the direction of a magnetic field with the axis OZ satisfies
inequality —Jo/8' < cos2a < Jo/f, the system can exist both in FM- and in
QFM-phase, depending on the value of an external magnetic field.

If cosa > Jo/f, the system can exist in any of these three phases (FM,
QFM, and QU) depending on the value of a field. The obtained phase diagram
describes well the limiting cases & = 0, o = 7/2, investigated in detail in Sec. 3.
It is necessary to note that on lines 1 and 2 (Fig. 2) the system undergoes phase
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H \

Z

F[c3

HcZ

‘Hl.\' H

X

0o H

ZX

Fig. 2. The phase diagram of a strongly anisotropic two-axis ferromagnet in an external
field, arbitrarily directed in the plane ZOX.

transitions of the second type, while the unstable (“soft”) mode is a transversally
polarized quasiphonon branch, and in a quasimagnon branch of excitation there
appears a ME gap.

5. Conclusion

The researches carried out show that two-axis FMs have a number of specific
features in comparison with one-axis ones. A special interest represents the case
of strongly anisotropic magnets. In this case, as was shown above, the realization
of a phase with a tensorial order parameter is possible. Depending on a relation
hetween constants of OA, this phase can be realized in different ways. The phase
diagram of such systems has no analogues for one-axis magnets.

In the case of large ME exchange, t- and 7-polarized acoustic modes do
not interact with a magnetic subsystem and [-polarized acoustic modes actively
interact with a relaxational quasimagnon branch. At critical values of the field,
the longitudinally polarized acoustic modes become soft modes, i.e. the OPT is
realized, at which the length of a magnetization vector also changes.

Let us note that in the experiment [12] there was revealed the striking cor-
relation of the high-frequency characteristics and the acoustic ones in a magnetic
transition in ErFeOs, caused by longitudinal oscillations of magnetization.

Such behaviour of I-polarized acoustic wave is not observed in one-axis FM
or FM with small OA and small value of a ME parameter. Hence, it is possible
to assert that, first, this effect is connected with the symmetry of a crystal, and
second, with the effect of “quantum reduction of spin”.
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