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The electronic energy loss and the straggling of the energy loss of the
degenerate electron gas for excited H*-, He*-, He**-, and Lit-like ions were
calculated. The results were compared with the corresponding characteristics
for ions kept in the ground state. The linear response theory was used. The
ion was described by the Hartree—Fock—Slater formalism and the medium
by the dielectric function. The stopping and straggling effective charges Z ef
for the energy loss were analysed and they were found to differ from each
other and to depend on the one-electron radius rs, on the ion atomic number

and on the number of electrons Ni carried by the ion.
PACS numbers: 61.80.Lj, 71.10.Ca., 34.50.Bw

1. Introduction

When an ion approaches and crosses the surface of a solid and then pene-
trates the bulk it exchanges electrons with the solid forming intermediate electronic
configurations. It experiences complicated excitation—deexcitation transitions. For
a. short time it remains excited. The configuration alters the electronic energy loss
and the straggling of the energy loss for the ion beam. This is particularly im-
portant at. low ion velocity v. The basic papers in this field [1, 2] were related
to the analysis of the stopping and straggling of an atomic nucleus as a.n ion
and thus neglecting the effect of its electronic configuration. The results of cal-
culation for structured projectiles at high [3-6] and low [7-9] ion velocities, and
also experimental results for low velocity heavy ions [10] were published. To the
author's knowledge, neither theoretical nor experimental data. on the energy loss
experienced by low velocity excited ions are available in the literature.

The most characteristic output of theory and experiment at low ion velocity v
is proportionality of the energy loss to v and its straggling to v 2 . It origins from
the proportionality of the response function to the energy transfer from the low
velocity ion to the medium, ε-1(k,ω ) α ω. The target and the ion features, hidden
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in the proportionality factor, are dependent on the model used for calculations.
The free electron gas (at T = 0 K) characterised by the one-electron radius rs

(n = 3/4πr3s αó is the electron gas density) is considered as a target. The ion of
interest consists of an atomic nucleus of atomic number Z; , moving slowly with
the velocity v, and carrying Ni < 4 electrons.

In this paper m., e, α 0 , and v0 are the electron rest mass, the elementary
charge, the Bohr radius, and the Bohr velocity, respectively. Atomic units are used
throughout, unless otherwise indicated.

2. Calculation procedure

Within the random phase approximation (RPA) the probability for the
transfer of the energy ω and the momentum k from an ion to a degenerate
free electron gas is described by the equilibrium dielectric function ε(u, z) =
1 + (x 2 /z 2 )[ f1(u, z) + i f2 (u, z)], where the parameters are defined as z = k/(2 kF ),
u = ω/(kvF ), x 2 = rs /(πα). The Fermi wave vector is kF = α/(α 0 rs ) and
α = (9π/4)1 / 3 . The electronic energy loss per unit path length x, dE/dx, and
the straggling of the energy loss parameter 0 2 (per electron) are given by [1]

where the Z„, functions are defined as

For f1(0, z), the expressions derived for the Fermi momentum distribution [1] can
be used

The form factor Z 2 (z) is the Fourier transform of the spatial electron distri-
bution on the ion [6] being a sum of the screening component Zs reducing distant
collisions, and the anti-screening component Z2a, strengthening close collisions

where p(z) is the one-electron form factor.
The conduction electrons of a solid screen the quasi-static electric potential of

a slow ion due to dielectric response. Provided the speed of the ion is lower than
the Fermi velocity vF = v0α/rs , this screening can be approximately described
in terms of the screening function exp(—rkTF), where the Thomas—Fermi wave
number kTF is related to the Fermi wave number as k2 TF = 4kF/(πα0 ) .

For ions carrying Ni < 4 electrons we apply the Hartree—Fock—Slater (HFS)
description. The total self-consistent Hamiltonian is given by
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Vee and t ne are the exponentially screened interactions between two electrons and
between an electron and a nucleus, respectively. Physically, this phenomenologi-
cal Hamiltonian gives an account of an approximate, long wavelength screening
exerted by the electron gas instead of the response provided by the full dielectric
function ε(k, ω).

Approximate eigenfuctions of the Hamiltonian Eq. (5), in the form of HFS
determinants, are built from is a.nd 2s one-electron trial functions

We call λ = α 0 /Z the size parameter of the electron distribution. This pa-
rameter is modified when the ion enters a solid. We determine Z = Zm in from the
variational condition of minimum for the expectation values of the total Hamil-
tonian H. For different 1s2s configurations of excited (Ion*) ions and ions in the
ground state (Ion) we have

The energy (E), the direct Coulomb (V), and the exchange (A) integrals
were calculated analytically and are given in Appendix.

Taking a Fourier transform of the electron density built from the eigen func-
tions of Eqs. (6) we have

where = ICFλz, Na is the number of electrons in α state.

3. Results and discussion

When an ion with a few electrons is in the vacuum (only atomic screening
is effective) then kTF = 0, and then the H's of Eq. (7) reach minima (calculated
as aH/aZ) at the values Zm i n presented in Table for excited ions and these in
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TABLE

Z,,,,,, and 11 for H- to Be-like ions
in vacuum (kTF =-- 1)).

ion-like N1 Z,,,;„ - Z; H/Z,2nim
H 	 1 	 0 	 -1/2

H 5 	1	 0	 -1/8
He 	 2 	 -0.3125 	 -1
He*	 2	 -0.15034	 -5/8

He**	 2	 -0.30078	 -1/4

Li	 3	 -0.45458	 -9/8

Li*	 3	 -0.36546	 -3/4

Be	 4	 -0.6284	 -5/4

the ground state. In this model the energy required for excitation or for electron
detachment can he calculated as a difference of adequate H's. For instance, the
calculated total energy for He atom, H(He(1s22s0)) = -77.45 eV is a. hit worse
than the reference value of-77.83 eV [11]. The excitation He(1s 2 2s ° ) — He(1s12s1)
demands 19.29 eV, and detachment of electron He(1s 2 2s °) → He(1s 1 2s°) + e -

demands 23.06 eV, whereas the He atomic energy level taken from a photoelectron
measurement is 24.58 eV [12].

In matter these parameters are modified due to the interaction with electron
gas, but an ion exists as long as its total energy remains negative. In this case
Z,,,;,, was calculated by taking a. numerical minimum of the appropriate H from
Eq. (7), so Z,,,;,, depends on Z;, N1, and additionally on rs . Subsequently, Z,,,;,,
was used in Eqs. (8, 4). As r s decreases, for a given Z1, Z,,,;,, increases causing a
decrease in the total projectile energy, which means a stronger screening of the ion
nucleus interaction by the medium. This screening is also much more important
at low Z;. For instance, in the electron gas of rs = 1, H(He(1s 2 2s°)) _ -2.48 eV.
For excitation 1.47 eV is required and for electron detachment 2.23 eV. For dense
electron gas, rs 0, the minima of energy are reached at Z,,,;„ = 0 in consequence
of the model with exponential screening. For a given Z; a minimum of the total
energy is reached at N1 = Zi , whereas minima at other Ni's are local and reached
by deformation of the charge distribution shown in Zmin . For instance, we can
have a metastable configuration of a proton even with four electrons. From Table
the minimization of H for Be( 1s22s2)in  the case of Z1 = 1 gives a minimum equal
to -4.7 eV for Z,,,;,, = 0.3716.

As an example of behaviour of an ion in electron gas, the dependence of Z,,,;,,
and H upon Zi and rs for excited Li*(1s 1 2s 2 ) atom and for the same atom in the
ground state Li(1s 2 2s 1 ) are drawn in Fig. 1. It should be noted that the denser the
gas is, the smaller Z,,,;,,, and the flatter the electron distribution becomes. Below
rs = 0.6 neither Li* nor Li can create a bound state in electron gas. Moreover,
Z,,,;,, is much smaller for an exited ion than for a.n ion in the ground state.
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Fig. 1. Z nin calculated numerically as a function of (rs, Zi) for Li-ion electronic con-
figuration. For r s = 100 the asymptotic values are shown. In the whole (rs,Zi) region
Zmin(Li * ) < Zmin(Li). Li atoms cannot be stable below r s = 0.8.

Fig. 2. Reduced energy loss function Z? /Z? for H and He atoms. To get energy loss
in eV/A multiply by 21.82Z; v.

In Fig. 2 we compared the reduced energy loss Z /Z; for hydrogen and
helium atoms in electron gas as functions of r 5 . We get the energy loss per unit
path length (in eV/A.) by multiplying the vertical scale by 21.824 2 v. Furthermore,
the atoms cannot exist in solids where r s < 1. In the region of metallic density H



Fig. 3. The stopping effective charge for H to Be atoms (including excited).

Fig. 4. The straggling effective charge Ze f2 calculated for H to Be atoms is generally
larger than the stopping effective charge Zen. For r s > 2 this difference is larger for
excited ions than for ions in the ground state.

and He* lose energy in accordance with proton, whereas for dilute gas their lossof
energy decreases by several orders of magnitude when compared to proton. It is
interesting to note that H* and He** lose energy like proton in the r s region in
which they can exist. The energy loss straggling reveals the same behaviour.

Usually, for the energy loss analysis effective charge is defined [6, 9], relating
the stopping and straggling produced by a given ion to the same quantities by the
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ion atomic nucleus. For ions with Ni electrons, the effective charge  for the energy
loss Zen and for the straggling of energy loss Zef2 is Zefm = VZ2m(Ni)/Z (0),
where Z2m is given by Eq. (2). For a point charge Zefm = 1, but for an ion in solid
it depends on Z1, N;, and rs . In Fig. 3 the effective charge for stopping Zen for
all the atoms with (N1 < 4) is displayed. We can distinguish three groups: atoms
in the ground state losing the energy slowly, atoms singly excited (and proton),
and atoms doubly excited (and excited hydrogen). These groups correspond to
the size of projectiles. Particularly, in the case of He atoms, at nearly metallic
density rs = 8, the stopping effective charges differ from each other by the order
of magnitude. Also, it should be noted that for all the atoms there are regions of
rs within which Zen > 1, i.e. the regions where atoms lose energy to the medium
more effectively than their nuclei. This is due to the inclusion of the anti-screening
of atomic electrons in the model given by Eq. (4).

An interesting result, with no experimental reference, is shown in Fig. 4. The
straggling effective charge turns out to be several percent larger than the stopping
effective charge, Zef2 > Zefl . This difference decreases rapidly as r s → oo, and
also as Z1 » 1. Again the excited atoms (and hydrogen) are shifted towards dilute
electron gas when compared to the atoms in the ground state.

4. Conclusions

The results of the calculation of the electronic energy loss and the strag-
gling of the energy loss in free electron gas for low velocity excited ions were
reported. The calculations were carried within the linear response theory. The
electron gas was described by the Lindhard dielectric function. For H- to Be-like
ions the Hartree–Fock–Slater description was used. A screening parameter of the
wave function, Z,,,;,,, was calculated from a variational principle and shown to de-
pend on rs , Z;, N. In consequence, a region in the (rs , Z1) plane can be found in
which an ion of a given 1s2s electronic configuration is stable. It was shown that
the effective charges for the energy loss (and also for straggling of it) for ions kept
excited during the passage through matter and these in the ground state may differ
by an order of magnitude. Particularly promising are He atoms in three states of
excitation. It was found that Zef2 > Zef1 and the difference is the largest for dense
gas and light ions. For dense electron gas, this difference was shown to be smaller
for ions bemg excited than for ions in the ground state. For dilute electron gas the
differences are larger for excited ions.

Appendix

The energy (E), the Coulomb (V), and the exchange (A) integrals 	 •
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were calculated as (y = kTF) and y' = 27/3)

in Hartree units.
For y' = 1 the exchange integral A is finite A1s23 = Z(16/729)(5/12). In the

high electron density limit, as r s → 0, the energies E1-x, = 4E2 3 = Z 2 /2 and the
Coulomb and exchange integrals vanish.
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