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We present a model calculation of optical bistability and polarisation
evolution in optically birefringent media based on the interaction of three
waves. Second-order optical nonlinearity (described by the third rank sus-
ceptibility tensor) is assumed to be dominant. A bistable light transmis-
sion is analysed in terms of standard Fabry—Perot model of feedback, and
is a direct consequence of the results obtained for a semi-infinite medium.
A second effect considered in the paper is evolution of polarisation state
of the waves involved in these processes. We derived a closed formula for
intensity-dependent refractive index, which corresponds to that used in the
case of third-order nonlinear media. As a result, we calculated both intensity 	 •
and Stokes parameters of transmitted light.

PACS numbers: 42.65.Pc, 42.65.11w

1. Introduction

Optical bistability was first discovered in media with the third-order
nonlinearity. With such a nonlinearity the refractive index depends on the light intensity.
The physical background of this phenomenon is described in many textbooks (see
[1-3] for a review). On the other hand, the second-order bistability has focused
much less attention [4-8]. The mechanisms leading to it are different from those
of the third-order bistability. To explain second-order bistability it seems neces-
sary to consider the so-called cascade-process [9, 10], which is connected with the
second-harmonic generation. The generated wave of frequency 2ω is of a weak
intensity and does not essentially change the amplitude of the incoming wave of
frequency ω. However, its influence on the phase of the incoming wave is crucial.
This phase change, together with an appropriate feedback and non-vanishing phase
mismatch, is sufficient for bringing about the intensity bistability.

(373)
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In a more general case, when the sample is illuminated by two waves of
frequencies ω 1 and ω 2 , with ω1-x > ω2, the role of the second-harmonic wave is
taken over by the wave with frequency W3 = ω 1-x — ω2. This wave changes the
phases of the two incoming waves in such a way that their intensities exhibit
bistability. •

The intensity-dependent phase change results also in evolution of the polar-
isation state. This may lead to a completely different behaviour as compared to
the linear case; including polarisation constancy (along the propagation direction)
and polarisation bistability (with regard to the input intensity).

2. Degenerated three waves interaction
in second-harmonic generation regime

This paper deals with birefringent crystals for which the condition of the
phase-matchmg may not he fully satisfied (e.g. n(°)(ω) < n(e)(2ω) for negative
birefringence). In such a. case the process of the second-harmonic generation can
be maximised by appropriate orientation of the sample. It corresponds to the
propagation of the fundamental wave in the direction (the Oz axis) which is per-
pendicular to the main optical axis (assumed further as the Oy axis).

We assume that the sample of nonlinear crystal is illuminated by a strong
laser beam normally to the surface of the film. The wave is characterised by the
frequency ω, the wave vector kw = (0, 0, ku,) parallel to the z-axis of Cartesian
coordinate system, and the electric vector Ew = (Es, Ems, 0). Inside the crystal the
wave vector maintains its direction and remains perpendicular to E.

The condition of the smallest phase mismatch in the process of second-har-
monic generation in (negatively) birefringent media, leads to the following pro-
cesses:

The ordinary wave is always polarised in the direction which is normal to the plane
defined by the main axis (here Oy axis) and k vector, whereas the extraordinary
wave lies in that plane. Within this convention we may write

The component E» of the fundamental wave is not involved in the nonlinear
interaction considered, hence its evolution follows the rules of linear optics.

The second-order nonlinearity of the material is described by the third-order
susceptibility tensor x(2) , which appears in the relation : P NL = x(

2 )EE. According
to (1) only two components of xß- 2 > are involved: x(2)xxy and x(2)yxx,.  These may, how-
ever, depend on the frequency. In the absence of absorption, Kleinman symmetry
relations apply and then we can express both components by one parameter y as
follows:
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Due to the nonlinearity the two waves E 1 and E2 of frequencies ω and 2ω,
respectively, are coupled and there appears a mutual energy transfer. This energy
transfer may exhibit periodicity along the z-axis and was recently named the
cascaded process. It was suggested in [11-13] that the cascaded process may lead
to nonlinear phase shifts of the fundamental frequency and of the second-harmonic
beam. Since dispersive optical bistability is usually described in terms of the phase
shift arising from the Kerr nonlinearity, a. bistable behaviour based on nonlinear
phase shift in the cascading process is also expected.

In the slowly-varying-envelope approximation, Maxwell's equations applied
to a noncentrosymmetric and non-absorbing crystal, lead to two coupled amplitude
equations, which govern the second-harmonic veneration process

where E 1 and E2 are complex electric fields of the incoming (fundamental) and the
second-harmonic beam, respectively (the asterisk denotes the conjugate complex
quantity),

is the wave-vector mismatch and

where [c0 denotes the permeability of vacuum, n'3,' are the (linear) refraction indices
of the two waves of frequencies ω and 2ω, c is the speed of light in vacuum, and γ
is defined in (3). Since n 2 — n 1 > 0, the wave-vector mismatch is positive.

Our main assumption is that of a sufficiently large phase mismatch Δk. This
implies the absence of depletion of the incident wave amplitude, but its phase φl
depends on z. After some algebra we obtain the following formula:

where 4 1 = φ1(z) — φ1(0) and I =1E11 2 .
In order to derive consequences from (7)' we refer to the case of media with

the third-order nonlinearity. when the refractive index n is written in the form

where nL is the linear refractive index and n NL is a coefficient of the nonlinear
part of the refractive index and E denotes the electric field. By analogy, we can
identify δ p l with nNLI1 , and then we get

We see that the refractive index essentially depends on the path length of the
beam. Thus, the effect of the nonlinearity can be enhanced by a proper choice of
the thickness of the sample. It is worthwhile to note that nNL is always positive,

asΔk>0.
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3. Three-waves interaction in the regime of difference-wave generation

The discussion of Sec. 2 may be extended to cover the case of interaction
of three waves. We now assume that two waves of frequencies ω1 (pump beam)
and ω 2 (probe beam) enter a nonlinear medium. The nonlinear interaction between
them leads to waves with frequencies combined from ω1 and W 2 , in particular to the
wave with frequency W3 = ω1 — ω 2 . In the slowly-varying-envelope approximation,
Maxwell's equations applied to this system lead to coupled amplitude equations

where Δk = (ω1 n 1 —ω 2 n2—ω3n3)/c and (μ0cωj/nj)X(2)(ωj) =	 The assumption
of the small pump-wave depletion (I, (z)	 I, = const) requires

where

In what follows we are interested in two special cases: (a) I2 I 1-x and (b) I2 < I1-x.
In the case (a) the condition (10) implies that 0k 2 > (4μ c20γ2 ω 2ω 3/n 2 n 3 )I1-x.
It means a large wave-vector mismatch, hence the intensities of both two waves
remain practically unchanged. Under this condition we can derive the following
expressions for the phase shifts:

These can be related to intensity-dependent parts of refractive indices

which stand in the formulae for effective refractive indices

We observe that neff1depends only on I2 , but not on I2, and vice versa. This
cross-dependence represents a new effect in comparison with the standard Kerr
effect.

In the case (b) we assume that the intensity of the pump beam is much
larger than that of the probe beam. The condition (10) will now be satisfied if
0k 2 > (8μ20c 2γ2ω2ω3/n 2 n3 )I1 . Following the discussion leading to (8) and (13) we
obtain expressions for the intensity-dependent parts of refractive indices
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(the dependence on I, is hidden in ∆keff: see (111).

We observe that the formulae for intensity-dependent refractive indices (15a,ó)
have a similar structure to (8) and (13). However, an important difference is that
now 4 1' depends also on the corresponding pump beam intensity I 1-x.

4. Optical bistability in Fabry –Perot cavity filled with x(2) medium

The mode of reasoning in Refs. [1, 2], developed for dispersive media with
third-order nonlinearity, can be extended to second-order nonlinear media pro-
vided that intensities of intracavity beams remain constant. In this case the stan-
dard expression for the transmission of the cavity is given by the well-known
formula:

where δφ(I) is — for the case of SHG — given by (7).
This function has a periodic character, shown in Fig. 1. The region with triple

solutions characterises the phenomenon of bistability. Increasing the parameter of
nonlinearity y enhances the above effect, leading — in general — to multistability
(Fig. 2).

When dealing with two incident waves of comparable intensities, the for-
mula (16) is replaced by two coupled formulae of the form

Fig. 1. Transmission of the cavity a.s a function of incoming beam intensity.
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Fig. 2. Output versus input, intensity of strong wave for different values of input
weak-wave intensity. a — 1;" = 0.01, b — h' = 0.02, c Iż" = 0.04 (in arbitrary
units).

for (m,1= 1,2; r 1). •
If I2 < I1 , it is necessary to take into account the spatial variation of the

probe beam inside the cavity. This effects in the reformulation of the above ex-
pression for the pump beam (with 1 2 unchanged)

where

Here, O k ff = ∆keff ( 1 _1R1 Irt) and Δke% = ∆keff (11 R Iout1). The phase shifts

of the forward and backward waves may be calculated on the basis of the for-
mula (15a). For the sake of simplicity we omit here the details.

In Fig. 3 we observe that changing the value of input probe beam intensity
we influence the input-output characteristics of the Fahry–Perot cavity for the
pump beam, from linear to bistable. We also observe (Fig. 4), that the intensity of
the probe beam at the output is strongly influenced by the change of input pump
beam intensity, and that the shape of this relation can exhibit bistability.

We have thus shown that the cascaded process in a Fabry–Perot cavity filled
up with a material exhibiting second-order nonlinearity, in the case of sufficiently
large phase mismatch, leads to the effect of intensity bistability of dispersive type.
This bistability is connected with a length-of-path dependent refractive index.
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Fig. 3. Output weak-wave intensity versus strong-wave intensity for different values of
input weak-wave intensity: a — I;" = 0.01, b — I;" = 0.02, c — Iin2 = 0.04 (in arbitrary
units).

Fig. 4. (a) The ratio b/a of polarisation ellipse axes of the transmitted wave as a
function of the input intensity. (b) The azimuth B (in degrees) of the polarisation ellipse
axes of the transmitted wave as a function of the input intensity.
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5. Evolution of the polarisation state

As already mentioned, the extraordinary wave (Ey component of the total
electric field) of the fundamental frequency is, in our model, not influenced by
the nonlinear interaction. On the other hand, the phase of the component Ex is
intensity-dependent, as described in Secs. 2 and 3.

The polarization state is typically described in terms of Stokes parameters
(s 0 ,s 1 ,s 2 ,s3 ). These are expressed by

and the angle 9 equal to

Here,

where δ denotes the initial phase shift between Ex and E9 modes. Both param-
eters b/a and B are influenced by the nonlinear phase shift which is, as already
mentioned, a function of I.. Their dependence on I„ for a given value of I y is
illustrated in Figs. 4a and b.

6. Conclusions

The. basic assumption of our calculation is that of a large wave-vector mis-
match Δk. In consequence, the amplitude A l of the incoming wave E1-x is practically
constant. However, the phase φl of the incoming wave exhibits a dependence on
the path length and a linear dependence on the intensity I1-x (z = 0). The role of the
second-harmonic wave E2 with the amplitude A2 is to bring about the path-length
dependence of the phase of the incoming E l -wave. The cascaded process is required
for the appearance of the second-harmonic wave E2, without which intensity and
path-length dependence of the phase of the incoming wave E 1 cannot appear. The
dependence of the nonlinear refractive index n.NL in (15) on the path length rep-
resents a new effect which is a. direct. consequence of the phase change δφi (z)) in
(13). As the intensity of the second-harmonic wave with the amplitude E2 does
not appear in (13) the presence of this wave in the Fabry—Perot cavity can be
neglected. The feedback process in the cavity can be described following [1, 2] by
considering only the forward and backward waves of frequency w.

Bistability resulting from three-waves interaction was described in an anal-
ogous way. The wave with frequency ω 3 = ω1 — ω 2 takes over the role of the
second-harmonic wave. This wave is indispensable for the appearance of the phase
changes 4,1 and 4,2, however, due to its small intensity it can be neglected in
this discussion of the feedback in Fabry—Perot cavity.

We thus have constructed a model mechanism of optical bistability in me-
dia without space-inversion centre, which exhibit second-order polarisation P( 2 ).
The number of such materials is large, however, their bistable properties have
not been examined as yet in a satisfactory manner. An experimental verification
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of the conclusions of this paper for several organic materials has been recently
announced [14].
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