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•
Stability of motions for different potential functions describing vibra-

tional motions of rotating molecule has been discussed. It was shown that
an equilibrium position for nonrotating TO and rotating r J molecules for al-
most all the examined potentials is a node, but for the molecule described
by the soft body model a critical value of rotation quantum number J, oc-
curs above which TO is a saddle point, and the stable motion may occur only
around rJ.

PACS numbers: 33.15.—e, 33.15.Dj, 33.15.Mt

Stability or instability of motions plays an important role in many problems
of physics, astronomy, molecular physics and is determined by the form of potential
used to describe the problem considered [1-9].

In this paper I would like to discuss this problem for rotational—vibrational
(rovibrational) motions which are described by many different potential functions
(see for example [10, 11]). For this purpose eigenvalue λ of stability matrix A will
he calculated for two fixed points r 0 and rJ [1, 5, 7]. When λ is a real and positive
number, the fixed point is a repeller, whereas for an imaginary one, the motion
examined is stable around this point which is a centre.

The elements of the stability matrix Air are calculated by the following
method [1, 2, 5, 7]. Let us consider a motion described by the Hamiltonian

where pi is the generalized momentum for the i-th degree of freedom (i = 1, ... , f),
qi is the generalized coordinate for the i-th independent motion (i = 1, ... , f). Now
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and for k=1 	  f

=Ili , 	g f 	 +1,	 x91 = 	 • •,pf ; q is the i-th fixed point.
The eigenvalues of the stability matrix are calculated from the equation

DetAkl — λδktI = 0.

Let us consider an example as simple as possible, i.e. a one-dimensional harmonic
oscillator with centrifugal force, now the Hamiltonian has the form

and F1 = p/μ., F2 _ -kV +R2/(μr3 ), the fixed point is obtained from the condition
F•7 = 0, and is equal to r4r = R2/μk, now

The eigenvalue of problem for the case has the form

has an imaginary value for 7- 0 so the fixed point is a node [1, 7].
Table I shows the results obtained for different potentials, as well as the

role of rotation of the body considered in the destabilization or stabilization of
motion. These results have been calculated for diatomic molecules, because for
these species the potential which properly describes the internal motion is well
known [10-12]. For these calculations the fixed point r'0 was obtained from the
condition 0V/dr = 0, whereas the second fixed point rJ was obtained from the
overall equilibrium condition, i.e from the following equation:

where R2/μr3 describes a. force brought about by rotation of a. molecule. •
As follows from Table I the rotational motion of a molecule stabilizes the

nodal feature of the fixed points r0 and rJ . Interesting results have been obtained
for a, double minimum potential (see no. 5 in Table I) for which rotation of a
molecule stabilizes r 0 (the point for which the potential has a maximum).

In a. series of papers [13-19] it has been shown that the detected rovibrational
transitions are very well assigned within the soft or deformable model, i.e. within
the model which takes into consideration a. deformation of a. molecule brought.
about by its rotation. This model introduces the references configuration, i.e the
rigid configuration around which the nuclei perform their motions, from the con-
dition
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where .ƒ0i = —dV'/dr is a force acting upon the i-th atom of a molecule brought
about by electronic structure of a molecule, and w is the angular velocity of rotation
of a molecular coordinate system relative to the laboratory one.

The solution of this equation, riJ, gives the equilibria positions which depend
on the angular velocity w. As a result the overall angular momentum is given by
the equation

is an additional angular momentum brought about by the changing of the distance
of the i-th element of the soft body from the equilibrium position riJ due to
vibrations (for r = riJ V L = 0 and Kα = 0, see Eq. (1))[13].

For diatomic molecules

and the Hamiltonian for internal motions has the following form [13, 14]:
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From this equation we see that internal motions of the soft body are described by
the effective potential

The additional angular momentum is calculated from Eq. (2), i.e from the equation

where s' = (∂rj /∂ωx) 2 +(∂rj /∂ωy ) 2 . The solution of this equation leads to the
following formula for additional angular momentum K:

where A = 4B0J(J + 1)μ.r0r2J/D, B0 = 0/(2[4), = V8B0J(J + 1)μr4J/D2 ,
d = 01 2 r 6 +247-3 + 446(r — r0 ) and rJ is obtained from Eq. (1) where the
Fues—Kratzer [20, 21] potential has been applied for description of the internal
motion. As a result rJ = r 0 [1 + B0J(J + 1)/D], and D is a constant related to the
dissociation energy of a. molecule.

Table II presents the results obtained for Are ( 1 Eg (0k )) molecule (the r0

and D parameters used in these calculations have been taken from Ref. [13]). Ta-
ble III shows the dependence of eigenvalue of the stability matrix λ on Y parameter
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defined by the relation Y = B0/D, and gives critical values of rotational quantum
number J, at which r0 changes its character from a node to a saddle point.

From the above presented calculations the following conclusions may he
drawn:

(1) for all the widely applied potentials, namely for the harmonic and non-
harmonic ones, the two fixed points, r0 and rJ, are nodes, and the motions around
these points are stable,

(2) rotational motions preserve the character of r 0 for higher energies, i.e
rotation stabilizes the structure of a molecule (this is the well-known gyroscopic
effect (see for example [5])),

(3) for the soft body model the character of the fixed points depends on
rotational quantum number J. Below some J called the critical rotation quantum
number Jc both fixed points, namely r0 and rJ, are nodes, whereas above J, the
motion around T0 is unstable (r 0 is a saddle point) but rJ is still a node, so a
motion around this point is stable. As a consequence a molecule changes its shape
above the critical value of J.
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