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New efficient numerical methods of computing eigenvalues and eigen-
vectors of quasi-one-dimensional effective-mass Hamiltonian with arbitrary
coordinate dependence of charge carrier mass are presented. Within the pro-
posed approach the effective-mass equation is replaced by a nonsymmetric
or symmetric matrix eigenproblem which can be analysed numerically with
the help of existing computer routines. The presented methods are verified
in special semiconductor heterostructure cases that are solvable within other
approaches. A generalization of the presented methods for nonparabolic ma-
terials is also discussed.

PACS numbers: 02.70.Bf, 73.20.Dx

1. Introduction

Physical properties of low-dimensional semiconductor heterostructures (e.g.
quantum wells, quantum wires, and superlattices) are commonly interpreted the-
oretically within the effective-mass theory [1-11]. In this context the main task
is aimed towards an accurate solution of one-dimensional effective-mass equation
(1DEME) for envelope function (Eq. (3) in the next section) with the charge car-
rier mass m being a function of z coordinate (the OZ axis is typically assumed
parallel to the growth direction of the heterostructure).

If m(z) = coast, then 1DEME is equivalent to one-dimensional Schrödinger
equation (1DSE) which, in general, cannot be solved analytically. Therefore various
numerical methods have been proposed and applied [12-33]. Among them, the
most popular are shooting methods [12-16] and global matrix methods [17-28].
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The latter methods, based on the finite-difference approach, replaces 1DSE 
with a matrix eigenvalue problem. The matrix methods have the following advan-
tages over shooting methods: (1) one needs no initial guess for eigenvalues and
eigenvectors to start computation; (2) neither iteration nor relaxation procedure
is employed; (3) one can use the most efficient and advanced computer algorithms
worked out in a numerical linear algebra [24, 29-33].

The one-dimensional effective-mass eigenproblem is solved usually by means
of transfer matrix formalism [3, 28], shooting methods or variational approach [2].
These methods are less universal and general than global matrix methods men-
tioned in the case of 1DSE.

In this paper new numerical methods of solving 1DEME with an arbitrary
(also continuous) dependence of charge carrier effective mass m on the z coordinate
are presented. They are, to the authors' knowledge, the first extension of known
global matrix methods to the 1DEME case. The proposed numerical approach
can be applied to compute eigenenergies and wave functions of bound states in
heterostructures with composition gradient, like ones regarded in [34].

Section 2 briefly presents physical foundations of our approach to the prob-
lem. Section 3 describes known matrix method for 1DSE with 9n independent
of z. The generalization of this method to the case m = m(z) is presented in Sec. 4.
Section 5 discusses a way of including non parabolicity effects in non-homogeneous
materials into the proposed approach. Section 6 contains the results of computa-
tional tests, followed by our conclusions.

2. The effective -mass equation

Let us consider a crystal with parabolic electron (or hole) dispersion law
[35, 36]. The dependence of the kinetic energy E on the wave vector k is, in a
general case, anisotropic

where m is the effective mass tensor. Here we will consider the case when in each
heterostructure layer it has the form

m= diag(mxx , myy , 911„ = 917.), 	 (2)
e.g., when OZ is parallel to the [100] direction in III—V compounds with zinc-blende
structure.

In the effective-mass approximation the envelope function φ satisfies the .
Schrödinger equation

where E(-10) is the operator formed by replacing k with —iV in (1). The same
procedure is applicable to the non-stationary case that is not considered here.
Factorizing φ(r) = exp(kxx + ky y)ψ(z) and using Eqs. (1) and (2) one can write
effective-mass equation for layered heterostructures as follows:
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The kinetic energy of the transversal motion

may be considered as a part of the "effective potential" U.
Let us note that more complicated and higher-order forms of the kinetic part

of the effective-mass Hamiltonian can be found in [7, 9]; they are not considered
here.

In the case when the effective mass is constant within specified intervals (e.g.
when two layers made of A and B materials meet at the plane z 0 ):

one can solve "ordinary" Schrödinger equations with constant masses mi
(i = A, B):

and match its solutions taking into account continuity conditions leading to con-
servation of the probability current

The connection rules for z/i and dψ/dz are discussed, e.g., in [4-6, 8] — here we
consider their simplest form [1]:

This is so-called direct matching procedure. It is the transfer matrix method foun-
dation.

One should notice that the continuity condition is really• satisfied only for
full electron wave function (the product of the envelope function and the Bloch
function ilk). It means that Eqs. (4) are approximate only.

3. Matrix methods of solving one-dimensional Schrödinger equation

For the sake of clarity, let us first consider the simplest mątrix method of
solving 1DSE [25]. More sophisticated ones can he found, e.g., in [19, 22].

We start with the dimensionless form of 1DSE

1 (z9 = 00 0(loz9 denotes the dimensionless wave function, m0, l0 and W0 are
the characteristic mass, length and energy, respectively, and G0 = 2m 0 loW0 /h 2 .

In particular, for m 0 = me , l0 = 1 A and W0 = 1 eV we get G0 = 0.262 468 291.
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In the following we will omit primes (')•for simplicity.
Solving (5) by the matrix methods consists of discretization of the equation

and reducing it to an algebraic eigenproblem. Equation (5) is discretized over grid
of points in a finite interval (a, b):

Before the presentation of further computational details, let us discuss the
meaning of boundary conditions (6). They correspond to infinite (non-penetrable)
potential barriers placed at the ends of. the interval. For well-like potentials (with
finite number of local minima and limz _ +„, if (z) = U+ , limz _,_ co U(z) =
envelope functions of bound states (if they exist) satisfy boundary conditions

which can be well approximated by (6) when the points a, b are far enough from
the envelope function localization area (where 101 is relatively large).

In this approximation, extended states (if any) disappear clue to .infinite
barriers and they cannot be found. Instead, "artificial" higher bound states arise.



It is known that any STM with non-zero off-diagonal elements has N dif-
ferent eigenvalues [31], and it is also known that eigenvalue of one-dimensional
Hamiltonian corresponding to the bound states are nondegenerate [37]. The low-
est eigenvalues of H correspond to energies of lowest bound states (cf. (8)). One
has to reject numerically obtained "artificial" eigenenergies 8j > min(U(a),U(b)),
because they result from the boundary conditions (infinite barriers at z = a, b).
For some potentials (e.g. a shallow half-infinite well) one has to reject all obtained
solutions — it means there is no "real" bound states.

Because we are not interested in all eigenvalues of H and it would be too
time-consuming to evaluate all of them (usually N 10 3 to 10 5 ), it is convenient
to employ a bisection method. It allows us to look only for eigenvalues lying in a .
specified interval, and it is very accurate and numerically stable. It is based on the
following theorem [38]:

The number of eigenvalues of S'TM (9) less than x is equal to the number of
negative elements in the sequence

More sophisticated methods of finding eigenvalues of tridiagonal matrices
based on bisection and Sturm sequences are presented in [39]; dependence of the
eigenenergy numerical errors on the number of grid points is also investigated
there.

After evaluating the eigenvalues e of the matrix H one can find its eigenvec-
tors T. It can be done in different ways.

A simple and efficient method of computing eigenvectors of STM (9) (or .

any block-tridiagonal matrix) is DWSZ method [40-42]. Unlike the standard
QR algorithm [32, 33], based on iterative orthogonal similarity transformations,

it allows u:- i n calculate one selected eigenvector and does not require computer
memory space for any N x N matrix.

We define recursively two auxiliary sequences

This abbreviation comes from the authors' names: Dy, Wu, Spratlin and Zheng.
t Q denotes an orthogonal matrix, R — a right-triangle matrix.
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We put Wk = 1, for the chosen value of index k, and calculate the other components
W2 using (11). Next we normalize the obtained eigenvector: ψ =

In order to verify the accuracy of numerical results one can use the Schrödinger
equation at zk point (Hψ)k = εψ k , the explicit form of which reads as

Due to a numerical error of the eigenvalue i=, the above equation is not fulfilled.
In computations we replace it with the inequality

for some specified accuracy r. If it is not satisfied, one should choose another
starting point k. The best choice is the point at |ψk| maximum.

It can be difficult to indicate the proper starting point. The practice shows
that it is efficient to find such an index k for which the quantity

reaches its minimum [39] or, which is equivalent and computationally more conve-
nient,

does. In tins way we can find the starting point already during computing the
sequences {O} and the components of W are calculated only once.

However, there are some potentials for which this method may fail. The
double quantum well with wide and/or high barrier is an example. In this case
eigenvalues are very close to each other; the wave functions values are so small in
the barrier that numerical precision is lost and computed eigenvectors are invalid.

The other method of computing eigenvectors is the inverse iteration method
[22, 29, 30, 43]. It also fails in the case of almost-degenerate eigenvalues.

4. Application of matrix methods to effective-mass equation

Let us write the effective-mass equation (3) in the dimensionless form anal-
ogous to (5)

From here on we will denote by w (for convenience) the reciprocal of the effective
mass (m -1 ).

In order to transform (12) into a matrix eigenproblem we approximate the
differential operator H 2v d* by finite differences. It can be done in different ways;
below we present two simplest ones.

4.1. Single grid method (SGM)

We transform the first term appearing in (12) as follows:

then we use standard three-point formulae for the second and first derivatives. We
get
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Introducing the quantities F and Ui., according to (8), we get the set of N
equations for the points zip (i = 1, 2, ... , N).Imposing boundary • conditions (6),
we obtain Matrix eigenproblem Hψ=εψ with

Matrix (13) is tridiagonal, but nonsymmetric. Nonsymmetric matrices are
generally more difficult to diagonalize than symmetric ones. However, in this case,
if not too rigorous assumptions about the function w(z) and the distance s between
grid points, namely

are fulfilled, the inequality bi+1 ci > 0 is satisfied and H is a quasisymmetric tri-
diagonal matrix [30]. Such a matrix has the spectrum identical to one with the same
diagonal elements ai and off- diagonal elements b'i = √bici. Transition between the,
quasisymmetric matrix H and the symmetric matrix H' can be done with the
similarity transformation

In this way one can use the Dean method to find eigenvalues of H. Transforma
Lion (14) need not be physically performed; it is equivalent to a slight modification
of the sequence (ui in comparison with (10):

The eigenvectors of H' can be computed with DWSZ method. Multiplying them
by 0 one gets eigenvectors of H. One can also apply DWSZ method indirectly to

the matrix H (13), but in that case the sequences {Of} have to be redefined
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4.2. Single grid method in the case of ideal abrupt heterojunction

Let us consider a jump of the effective mass at the point z1. Here we propose
a method of symmetrizing the matrix (13).

Let us assume that the function w(z) and its derivative are given by

where the magnitudes of g and are unknown. We have to find them to get a
symmetric matrix eigenproblem. In order to do this, we write the Schrödinger
equation for the points j — 1, j and j +1 and apply three-point formulae for the
first and the second derivatives. After some algebraic transformations we find that
the following relations should be fulfilled:

4.3. Double grid method (DGM)	

In this method we define the second (auxiliary) grid of points, shifted by s/2
relative to the main grid
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Therefore the values of effective mass are defined on the auxiliary grid z±-1/2 and
the values of wave function ψ on the main grid with integer indices, as in SGM.

Continuity of the function φ = Ź a is required for continuity of the proba-
bility current (cf. (4)). Multiplying the discretized version of (15) by s and passing
with s to O we get

so conditions (4) are fulfilled.
Applying formula (16) we can write the set of N equations for points zi

(i = 1, 2, ... , N) in the form HI" = E*, where H is STM (9) with

It is easy to see that for step-like function m(z) one gets a matrix identical to one
defined in subsection 4.2 — in this case both methods are equivalent.

Eigenvalues of H can be found by means of the Dean method, and eigenvec-
tors with DWSZ method.

5. Including nonparabolicity effects 	

The parabolic conduction band approximation that we have used so far is
in many cases insufficient [1]. The simplest way to go beyond its limitations is to
consider the effective mass as energy-dependent: m = m(e) and ω = ω(ε) [10].
It requires to compute the elements of the tridiagonal matrix H before each eval-
uation of the {ui} sequence for different values of E (or during this process) and
significantly slows down calculations. However, if the interval which is searched for
an eigenvalue is not too wide, one can linearize the dependence ω(ε) introducing
position-dependent coefficients a and a:

In this way numerical calculations can be significantly simplified.

6. Tests and comparison of the methods

We have tested both methods (SGM and DGM) in three cases which are
solvable analytically or by other numerical methods that give accurate results. We
have also used them recently for calculations in [44].

6.1. The Legendre equation

One-dimensional effective-mass equation is a special case of self-adjoint form
of a second-order ordinary differential equation
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The self-adjoint form of the Legendre equation reads as

and its solutions are the Legendre polynomials Pl(z) for l = 0, 1, 2, ... (they .are
considered within the interval (-1, 1)). If we choose the interval (a, b) ends so that
PI(a) = Pl(b) = 0, then P1 should be one of the eigenfunctions 7/J and l(1 + 1)
should be one of the eigenvalues e of one-dimensional effective-mass equation (3)
with 771(z) = 1l lz'- and /1(z) = O = const.

Table I presents exact eigenvalues E" 7> and the eigenvalues e( 1,2) and E. 1,1 ?
computed with DGM and SGM, respectively. The equation was solved within
intervals

where ±zol) are the l-th Legendre polynomial zeros furthest from the point z = 0.
We used N = 2 10 - 1 = 1023 and 212 - 1, = 4095 grid points. In the bisection
method the eigenvalue accuracy was set to 10- . 10 . Additionally, for N = 1023 we
computed the eigenvectors with the DWSZ method and compared them with the
Legendre polynomials, calculating

All the calculations in this example and following ones were performed on a
PC with extended variables (64-bit mantissa).

TABLE I
Λnalytical and numerical results for Legendre polynomials.

The numbers in Table I point to slightly better consistence with analytical
results in the case of the single grid method.

6.2. Finite rectangular quantum well

The second example we have used for testing our methods was 200 A wide
and 266 eV deep quantum well in the conduction band of GaAs/Al0 3Ga0.7As
structure, which is shown in Fig. 1.

The effective masses are: 771A = 0.067me, 771B = 0.085777.e •
Energy levels Ad"' ) were calculated by direct matching of wave functions in

the well (ψA(z) = cos(kz) or ψA(z) = sin(kz)) and in the barrier (ψB(z)= e-q|z|)
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Fig. 1. Quantum well test potential.

using conditions (4). It required to find numerically solutions of a transcendental
equation.

The energies 42) and 	 werewere calculated with DGM and SGM, respectively.
The grid of N = 4999 points was put on the interval (-250 A, +250 A). The
eigenvalue accuracy in the bisection procedure was set to 10 -1 ° eV. We put the
mean value of U, i.e. 133 eV, in the points of potential jump (they were grid
points). We treated similarly the jumps of w(z) in SGM.

The eigenvectors calculated with the DWSZ method were tested by a com-
parison with the eigenfunctions φ(dm) resulting from the direct matching proce-
dure. Similar to the previous example, we computed II  = ||ψl-ψ (dm)||

TABLE II
Numerical results for quantum well potential.

The results are shown in Table II. It can be seen that the double grid method
gives results closer to "real" ones obtained by direct matching.

For both matrix methods, the decrease in accuracy can be seen for higher
energy states. It results from a deeper penetration of their wave functions into the
barriers, so the boundary conditions (6) are less precise (e.g. for the state n = 5
the value ψ(z =±250 A) is 10 4 times more than for n = 1). The accuracy for
higher states can be improved by the use of wider interval (a, b).

6.3. Double quantum well

As the next test we have used more complicated structure — a double quan-
tum well made from the same materials as before (Fig. 2).
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Fig. 2. Double quantum well test potential.

We again compared the results with those obtained with direct matching. In
both matrix methods we worked on the interval (-400 A, +400 A.) and the grid
of N = 7999 points. The accuracy of eigenenergies search was 10 -1 ° eV.

TABLE III
Numerical results for double quantum
well potential.

The results are shown in Table III. They can he interpreted in the same way
as for a single well.

Because the results of DGM and SGM differ from each other, we have inves-
tigated how the U and w jump at the boundaries of the structure layers influences
this difference: Instead of step-like functions U(z) and w(z) we used, partially
following [10], continuous functions of Fermi distribution type

naturally T, µ and E are in length units.
We performed the calculations for N = 3999 grid points, using the potential

and the effective mass given below
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all lengths are expressed in A, all energies in eV. We have put 3.0 A and 0.1 A as
the broadening parameter T.

TABLE IV
Numerical results for smoothed double quantum well'
potential.

Selected results are presented in Table IV. It can be clearly seen that for
greater T (smoother functions U(z) and rn(z)) the differences between the results
of the two methods are smaller. Therefore, taking into account the data from
Table III we can state that DGM works well in wider class of cases.

6.4. Eigenstates in Fibonacci-type superlattices

In Ref. [44] we calculated, within the trace maps formalism [28, 45], reviewed
recently in [46], the spectra of the Landauer conductance of semiconductor gen-
eralized Fibonacci-type superlattices, which is related to the electron tunneling
coeffncient: σL~ T/R = T/(1—T). The l-th order structure Sl is a quasiperiodical
chain of wells A (e.g. GaAs) and barriers B (e.g. AlxGa1_xAs), arranged with
respect to the following rules:

where the exponents ?n, n > 1 mean repetition of the components.

Fig. 3. The Landauer conductance spectrum and computed eigenenergies (short ver-
tical lines at the top) for GaAs/Al0.3 Gao.7 As Fibonacci-type superlattice (1 7,

n = 2, m = 1). Extra eigenenergies are marked with "o".
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 We used DGM to compute the eigenenergies of these structures, putting in-
finite potential barriers next to the external B components. As is shown in Fig. 3,
the results agree with the maxima of T/R obtained within the trace maps formal-
ism with free boundary conditions. The extra eigenenergies are the consequence
of the applied boundary conditions.

. 7. Conclusions

Known numerical matrix methods of solving quasi-one-dimensional Schrö-
dinger equation [25] are extended to the case of one-dimensional effective-mass
equation in this paper. Two different discretization schemes of 1DEME are con-
sidered. They result in replacing effective-mass equation with a nonsymmetric or
symmetric matrix eigenproblem. They allow us to solve 1DEME (3) with an arbi-
trary dependence m(z). It is also possible to include band nonparabolicity.

The performed test results show that our nonstandard methods are correct.
and efficient. They prove the superiority of the• double grid method, which gives
accurate results for the continuous as well as for the step-like dependence m (z).
The single grid method, in the latter case, is less accurate. The next advantage
of the double grid method is that it uses a symmetric matrix, which is more
convenient in numerical calculations and needs less computer memory for storage.
In addition, the probability current in this method is conserved in an obvious way.

The methods worked out can be used to compute energy levels in semicon-
ductor heterostructures. In addition they can be applied to second-order differen-
tial equations of which self-adjoint form is an eigenproblem with "zero" boundary
conditions.
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