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We present an approximate analysis of the nonlinear operation of the
hollow-waveguide laser with Gaussian reflectivity profile output mirror, in-
cluding gain saturation and longitudinal- as well as transverse-field distribu-
tion of the laser mode. The model presented is general and can be applied to
the study of an arbitrary configuration of the waveguide laser. In particular,
the laser characteristics show the influence of the position of the output mir-
ror and the Gaussian mirror parameter on the power efficiency of the laser
system. It was shown that optimal position of the output mirror, which pro-
vides maximal power efficiency (with other parameters constant), depends
on output power level and the mirror reflectivity coefficient.

PACS numbers: 42.60.Da, 42.60.Lh

1. Introduction

Hollow-waveguide lasers [1-4] have become one of the most commonly used
laser structures in many applications. They have been intensively studied theo-
retically [5-11] as well as experimentally [12-19]. The efforts to demonstrate and
characterise different devices with different gases (especially with CO2) as an ac-
tive medium, and experiments with different resonators and waveguide types have
been reviewed in several very good papers [20-22]. However, most of the theo-
retical works consider mode behaviour of the passive resonators of the various
configurations. In particular, mode structure and loss minimisation in waveguide
resonators have been analysed. It has been found that three low-loss reflectors
geometries exist, i.e., when the large radius R mirrors are very near the guide (so
called "dual case I"), when the distance between the large radius R mirror and the
guide entrance is approximately equal to R ("dual case II"), and finally, when the
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mirrors are set at the Rayleigh range of the E}111 mode approximating Gaussian
mode (i.e., TEM00 beam having maximum overlap with EH11 across the guide
aperture - "dual case III", see for example [23]).

Moreover, transverse modes of active hollow waveguide resonators have been
investigated [11]. It has been shown that the deviations from passive waveguide
modes, resulting purely from the presence of the active medium, can be neglected
for parameters representing .typical experimental situations of single-guide CO2
waveguide lasers (with a guide cross-section of a few mm 2 ). The thermally-induced
index profile of laser gas already causes more efficient inversion exploitation over
the cross-section and supports transversal, single mode operation of the laser.

More recently, the approximate method describing nonlinear operation of
the hollow-waveguide laser including transverse field distribution has been de- .

veloped [24-27]. A simple approximate expression describing dependence of the
output power on the global small-signal gain coefficient, the distributed losses, the
mirror reflectance, and the transverse mode distribution has been derived. How-
ever, the model presented in [24] is confined to the "dual case P" and it gives
the results, which are in good agreement with the exact solutions [28-37] in the
low-power limit.

More general model of the nonlinear operation of the hollow-waveguide, valid
for the arbitrary configuration of the waveguide laser and the wider power range,
has been presented in [38]. It has been shown that the optimal position of the
output mirror (which provides maximal power efficiency of the laser system with
the other parameters constant) depends on the output power level and the mirror
reflectivity coefficient. Moreover, the laser characteristics show that introducing
an additional device into the cavity causes dependence of the power efficiency on
which end of the laser the light power is extracted from.

In this paper we extend the approximate model presented in [38] to de-
scribe the nonlinear operation of the hollow-waveguide laser with Gaussian mir-
ror [39-48]. In general, the utilization of the Gaussian-reflectivity mirror provides
the good transverse selectivity for the lowest-order (fundamental) mode. Thus, .

using Gaussian reflectivity mirror as a transmission one makes possible improv-
ing quality of the generated beam. However, because the Gaussian behaves in the
different way than classical mirror [49], the boundary conditions for the electric
field of the laser mode requires some modifications (in comparison with the model
presented in [38]). Moreover, we can also expect that the coupling losses between
waveguides modes and free-space modes will be changed and different low-loss
reflector geometries will exist.

In the next section, the theoretical model of the nonlinear operation of the
hollow-waveguide laser with Gaussian mirror is presented. With the help of the en-
ergy theorem and threshold field approximation an approximate expression of the
small signal gain as a function of output power and the characteristic system pa-
rameters is derived. In particular, this expression makes possible the investigation
of the effect of the Gaussian mirror on nonlinear operation of the hollow-waveguide
laser. It is worth noting that it is valid for arbitrary laser configuration. Laser char-
acteristics showing the behaviour of the coupling losses and power efficiency of the
laser structure are presented in Sec. 3. Section 4 gives the conclusions.
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	2. Energy theorem for the hollow-waveguide lasers 	

We analyse the rectangular waveguide laser shown in Fig. 1. The laser con-
figuration consists of hollow waveguide with distributed losses α0 (in general, dif-
ferent for different transverse modes) and the length L, filled with the gas active
medium with a small-signal gain coefficient go. The end mirrors "classical' and
"Gaussian", are set at distance z1 and z 2 from the waveguide, respectively. The
"classical" mirror has curvature radius R c . Its amplitude reflectivity coefficient p,
is uniform in the plane of the mirror. The Gaussian has curvature radius R g . Its
amplitude reflectivity coefficient pg varies with the radial distance from the center
of the mirror according to pg(r) = p0 exp (—r2 /wg), where wg is the Gaussian
mirror parameter [39, 40] and p0 is the amplitude reflectivity at the centre of the
mirror.

Fig. 1. Hollow-waveguide laser configuration considered in this paper.

For generality we also assume nonzero distributed losses in regions between
the waveguide and the end mirrors (regions I and II in Fig. 1), described by the
distributed loss coefficients αl and α2, respectively. These distributed losses can
represent many effects, in particular, they can represent losses in other extracavity
devices such as modulators and polarizers.

For our laser structure the electric field of the laser mode can be written
(similarly ac in [38]) in the follnwing form:

where Rqnl,,,,III(z) and S9m;,III (z) are the complex amplitudes of the two counter-
-running waves of the laser mode, in free-space (regions I and II) and in the
waveguide (region III), respectively. ERI9ńm (x, y, z) and E^ 9ń;^ (x, y, z) describe
appropriate transverse field distribution in the free-space (the Hermite—Gauss or
the Laguerre—Gauss modes [27]). In our case in region I we have ER qn ,,.n (x, y, z) =
Eś,qnm(x, y, z). In region II, because of Gaussian mirror acting, we have
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ER,gnm(x, y, z) ,-E Ell gnmx (x , y , z). In the waveguide we have the waveguide
modes [5,12] EN, nmb (x ) y, z) = EW qnm(x) y, z) = Egnm(x ) y, z). Subscript q de-
notes longitudinal mode number. Subscript nm describes transverse mode number.
In our approach we assume that the active medium is homogeneously broadened,
spatial hole burning and the mode competition are neglected, and finally, the fre-
quency  of the laser mode is centrally tuned.

For this assumption, an energy relation for our laser structure, according
to [38], can be written in the following form:

where it is the saturation power and the normalisation factor I I Egnm I I is given by
I I Egnm I I = ff I Egnm I2 dxdy, where the integral is carried out over the cross-section
of the waveguide. Moreover, the normalised function f(x, y, z) describes the spa-
tial distribution of the small signal gain, which in general, depends on the pumping
of the active medium.

In order to integrate Eq. (2.2) over the length of the structure we should
specify the boundary conditions. Because of the Gaussian mirror, they should be
modified in comparison to the model presented in [38]. Thus, in our case the new
boundary conditions can be written in the following form. At the ends of laser,
z = O and z = Ltot , we have

where a l and a2 are the point loss coefficients at the mirrors, total resonator length
equals to Ltot = z 1 +L +z2, Pout = PotP Utdescribes the total power escaping
from the laser and the effective reflectivity of the Gaussian mirror p eff, which, in
general can be defined as f461
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The boundary conditions at the waveguides ends, z = x1 and z = z 1 + L, can be
written as follows:

where EI(II)
R(5)gnm is free space mode incident on waveguide cross-section. It is worth

noting that in general, for the arbitrary waveguide structure geometry with arbi-
trary end mirrors, η1(2 ) and η 7611)can be different.

In order to calculate effective reflectivity of the Gaussian mirror and power .

coupling coefficients we need to specify appropriate transverse field distribution in
three regions of our laser structure.

In general, the transverse distribution of the laser mode inside the waveguide
is determined by the geometry of the waveguide and is described by waveguide
modes [5, 12, 381

In our model, because of the presence of the Gaussian mirror, we assume that laser
action inside the waveguide develops on the fundamental waveguide mode EH11
given by Eq. (2.9) with n = m = 1.

On the other hand, in free-space region the electric field is described by
the Hermite—Gauss modes. However, because of the transverse mode selectivity
of the Gaussian mirror, we can assume that in this region, the laser operates on
fundamental Gaussian mode
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where w0 is the beam waist, wg is the Gaussian parameter, the phase front curva-
ture radius is denoted by R, a is the wavelength in the free-space region, k =
is the wavenumber and q is the complex beam parameter.

Now, using the field distributions, Eq. (2.9) with n = m = 1 and Eq. (2.10), it
is possible to calculate spatial overlap integrals between waveguide and free-space
describing coupling efficiency, Eqs. (2.7) and (2.8), as well as effective reflectivity
peff of the Gaussian mirror, Eq. (2.5).

First, we consider the coupling between the waveguide mode and free-space
mode. It is well known [5] that the fundamental waveguide mode excites with the
maximal efficiency the fundamental Gaussian mode having Gaussian parameter
equal to wg = 0.703a (where a is the waveguide cross-section) and flat phase front,
i.e., 1/R = O (see also [49]). In this case the coupling efficiency 76'?%, which is
simultaneously power transmission from waveguide to free-space, is equal to 0.98.
Thus, we can assume that the waveguide mode leaving the waveguide transforms
itself into the fundamental (free-space) Gaussian mode having beam parameters
equal to wg = 0.703a and R = oo. Now, we can use Kogelnik transformation
[42] to determine the spatial field distribution of the laser mode in free space
(i.e. in regions I and II), instead of time consuming analysis based on diffraction
theory. Thus, using appropriate ABCD matrices (one including reflection from the
classical mirror and the second one taking into account reflection from the Gaussian .

mirror [39, 40]) it is possible to calculate the transverse field distribution of the
wave incident on the Gaussian mirror and waves coming back to the waveguide,
i.e., ER qnyn (x, y, z1) and Ej qnm (x, y, L + z 1 ), respectively. Furthermore, using
Eq. (2.8), the power coupling coefficients η1 (2) between the free-space and the
waveguide modes as well as effective reflectivity of the Gaussian mirror peff defined
by Eq. (2.5) can be determined.

Integration of Eq. (2.2), taking into account boundary conditions Eqs. (2.3),
(2.4), (2.6) results in
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This relation is exact and describes the energy conservation theorem for
hollow-waveguide lasers having resonator with the Gaussian mirror.

Similarly as in [26], we use that relation as a starting point in our approx-
imate analysis. We approximate the field distribution appearing in the energy
theorem, Eq. (2.11), including nonlinearities, by the one existing in the linear
structure, i.e. satisfying linear equations (valid at the threshold operation) for the
boundary conditions, Eqs. (2.3), (2.4), (2.6). It is worth noting that approxima-
tion has been verified for two-mirror lasers [50] as well as for distributed feedback
lasers [26]. Moreover, this assumption has been also confirmed experimentally [11].
According to this we assume that RI,II,IIIqnm (z ) and SI, II, IIIqnmSI II, IIIqnm(z) are proportional to
the threshold field distribution. Thus, we have in the region I (for O < z < z 1 )

According to the boundary conditions (2.3), (2.4) and (2.6), the relations between
the field amplitudes A. B. and C, can be written in the following form:

Moreover, taking into account boundary conditions (2.3), (2.4) and (2.6), the field
distributions (2.9), (2.10) and the relations (2.16), we can relate the field amplitude
B to the output power in the following way:
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Combining the approximate field distribution for /42,2 (z) and Sqmn(z), Eqs. (2.12)-
(2.14), and the expression for the field amplitude, Eq. (2.17) (together with the
relations (2.16)), with the energy theorem (2.11) we obtain

where the longitudinal intensity distribution is given by

and the normalisation constant N is defined by

Relation (2.18) is an approximate expression relating the small signal gain coeffi-
cient to the normalised output power and system parameters for hollow-waveguide
lasers having Gaussian mirror. This relation is valid for arbitrary configuration of
the cavity.

Using this formula the systematic study of nonlinear single mode operation
of the waveguide laser with Gaussian mirror is performed. The output power
characteristics revealing an influence of system parameters on laser operation such
as arbitrary mirror reflectivity, Gaussian mirror parameter and geometry of the
cavity are obtained.

3. Laser characteristics

In Sec. 3 we describe the results of numerical evaluation for the rectangu-
lar waveguide structure shown in Fig. 1. In our calculations we assume uniform
pumping of the active medium in waveguide region (f (x, y, z) E 1). The power
is extracted through the Gaussian mirror and the reflectivity of the conventional
mirror is equal to unity. The radius of the curvature of the end mirrors is equal
to R, = Rg = 200 cm, the length of the waveguide is equal to L = 1 m. In
our calculations, the spatial distribution of the waveguide mode is described by 
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the passive waveguide modes, since, according to [38], the deviations from passive
waveguide modes resulting purely from the presence of the active medium, can be
neglected for typical experimental parameters of single-guide CO2 waveguide laser
considered in this paper.

Fig. 2. Power coupling coefficient re as a function of the normalised to the mirror
curvature radius Gaussian mirror position z2/R g for three values of the Gaussian mirror
parameter wg . Gaussian mirror curvature radius is equal to Rg = 200 cm.

First we consider the behaviour of the power coupling coefficient ηin  between
the free-space wave reflected from the Gaussian mirror (region II) and incident on
the waveguide aperture (at z = L; see Fig. 1) and the waveguide mode.
In Fig. 2 this power coupling coefficient, i.e. ?7", is plotted as a function of the
normalised to the mirror curvature radius Gaussian mirror position. We assume
the square cross-section of the waveguide and consider height (or width) of the
waveguide as a parameter. The characteristics are obtained for two values of the
Gaussian mirror parameter wg = 1 cm and wg = 0.1 cm. It is worth noting that
the Gaussian mirror tends to the classical one when the value of the parameter w g

increases.
As we can notice, for the moderate values of w g (i.e., wg = 1 cm), simi-

larly as in hollow-waveguide laser with classical mirrors, there exist three reflector
configurations (corresponding to the dual case I, II and III) resulting in relatively
high coupling efficiency. However, with decreasing Gaussian mirror (GM) param-
eter (the profile of the reflection coefficient of GM becomes sharper) the coupling
efficiency decreases remarkably and the optimal position of the Gaussian mirror
is close to the waveguide aperture only. This effect is caused by the fact that
simultaneously the spot size of the reflected from GM wave decreases (for small
values of wg the spot size of the reflected wave practically equals w g ) and, as a
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consequence, the divergence angle of the coming back wave becomes greater. This
also justifies the fact that in this case the best coupling efficiency is obtained for
the waveguide with greater cross-section.

Moreover, it is worth noting that the effective reflection pee. of the Gaussian
mirror depends not only on p0 (like in classical mirror) but also on the Gaussian
mirror parameter wg , the radius of the curvature of GM R g , the position of the
Gaussian mirror with respect to the waveguide and on the waveguide cross-section.
It can be easily explained as follows. According to Eq. (2.5) pee. is not only deter-
mined by p0 but also by the ratio of the spot size of incident on GM wave (which
is sensitive to the cross-section of the waveguide and to the distance between the
waveguide and GM) to the Gaussian mirror parameter. When this relation takes
on small values the incident wave is reflected mostly by this part of the Gaussian
mirror which has relatively high reflectivity coefficient. Otherwise the effective
reflectivity peff becomes small.

Thus, as we can see in Fig. 3, the effective reflectivity pee. of the Gaussian
mirror decreases remarkably when we move out GM from the waveguide (the spot
size of the incident wave increases) and when the Gaussian mirror parameter w g

decreases (GM has the "sharp" profile of the reflectivity coefficient).

Fig. 3. Effective reflectivity of the Gaussian mirror (Jeff as a function of the normalised
to the mirror curvature radius Gaussian mirror position z2/R g for three values of the
Gaussian mirror parameter w g . Gaussian mirror peak reflectivity is equal to p o = 1.0.
Gaussian mirror curvature radius is equal to Rg = 200 cm.
Fig. 4. Small signal gain go as a function of the Gaussian mirror peak reflectivity p o

for three values of the Gaussian mirror parameter w g and for three values of waveguide
cross-section a. Gaussian mirror peak reflectivity is equal to p o = 1.0. Both end mirrors
curvature radii are equal to R c = Rg = 200 cm. Waveguide length is equal to L =
100 cm. Normalised output power is equal to Pout /Ps = 0.01.
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In Fig. 4 the small signal gain g 0 is plotted as a function of the output
mirror peak reflectivity coefficient p0 for various Gaussian mirror parameters w g
and various cross-sections of the waveguide and fixed mirror position (z 1 = z2 =
0.1 cm). The distributed losses outside the waveguide are neglected.

As we can notice, for small Gaussian mirror parameter (i.e., wg = 0.1 cm
and 0.01 cm) with increasing peak reflectivity p0 the small signal gain g 0 decreases
monotonically. In that case the maximal output power is obtained (for given pump-
ing level) for p 0 = 1. However, this value of the p0 does not necessarily provide
maximal power efficiency of the laser system.

Furthermore, for greater values of the Gaussian mirror parameter (i.e., when
GM has "soft" profile of the reflectivity coefficient) there exists optimal peak
reflectivity po resulting in small signal gain required to maintain given output
power. It is worth noting that in contradiction to the hollow-waveguide laser with
conventional mirrors (compare Fig. 2 in [381) in the present case (i.e., when the
cavity mirrors are close to the waveguide) the small signal gain increases with
increasing waveguide cross-section. This is caused by the fact that although the
volume of the active medium is enlarged but simultaneously the spot size of the
wave leaving the waveguide and incident on GM is increased and, as a consequence,
the effective reflectivity of Gaussian mirror becomes smaller (compare Fig. 3).

Moreover, the optimal value of p0 depends on the waveguide cross-section
and is shifted towards smaller values with increasing width (height) of the wave-
guide.

In Fig. 5 the small signal gain g0 is plotted as a function of the normalised
(to the curvature radius of the end mirrors) mirror positions for various mirror
parameter wg . The height (width) of the waveguide is a = 0.18 cm and the output 
power level is Pout/Ps = 0.01. The solid lines describe the behaviour of the laser
operation when the classical mirror changes its position and the Gaussian mirror
is set at the waveguide aperture. The dashed lines show opposite situation.

As we can notice the laser operation depends remarkably, on which mirror
is moved out from the waveguide. If we keep the Gaussian mirror close to the
waveguide aperture two optimal positions (resulting in minimal values of the small
signal gain) appear. In general, they correspond to dual case I and II, however they
are shifted towards smaller values of the normalised distance in comparison with
the positions predicted by linear analysis [4, 5, 23]. This effect is a consequence of
the gain saturation in the laser and it is discussed in detail in [38].

If we change Gaussian mirror position and keep classical mirror close to the
waveguide, the behaviour of the laser characteristics depends remarkably on the
value of the Gaussian mirror parameter w g . For the "soft" reflection profile of the
GM (i.e., wg = 1 cm) the small signal gain behaves similarly as for the classical
mirror, and in this case also two optimal positions exist.

However, as we can notice, when the distance between end mirror and the
waveguide is equal to the dual case II position (see Fig. 5) better conditions for
laser operations (i.e., smaller value of the small signal gain required to obtain given
level of the output power) are obtained, when the Gaussian mirror is set close to
the waveguide. But when the distance between the mirror and the waveguide is
greater than dual case II position, smaller values of g0 are obtained when the
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Fig. 5. Small signal gain go as a function of the normalised to the mirror curvature
radius classical mirror position z1/R c (solid line) and Gaussian mirror position z2/R g

(dashed line) for three values of the Gaussian mirror parameter wg . Classical mirror
reflectivity is equal to pc = 1.0. Gaussian mirror peak reflectivity is equal to po = 0.9.
Both end mirrors curvature radii are equal to R c = Rg = 200 cm. Waveguide length
is equal to L = 100 cm. Waveguide cross-section is equal to a = 0.18 cm. Normalised
output power is equal to Pout /Ps = 0.01.

classical mirror is at the waveguide aperture. Thus, we can say when we set an .

additional device (for example polarizer, Q-switcher, etc.) between the waveguide
and the end mirror, and mirror-waveguide distance is smaller or equal to the dual
case II position, we obtain a higher output power level (for given pumping level)
when we put it between the classical mirror and the waveguide. In the other case,
i.e. when the required distance is greater than dual case II position, the additional
device should be set between GM and the waveguide (i.e. at the other side of the
laser structure).

The situation is changed remarkably, when the profile of the Gaussian mirror
becomes sharper. As we can notice, the small signal gain g 0 increases with the
decrease in wg . This is caused by the fact that simultaneously the coupling losses
and transmission losses of GM increase (peff decreases, see Fig. 3). In this case, an
optimal position of the GM is only close to the waveguide. Thus the additional
device should be set between classical mirror and the waveguide.

In Fig. 6 the similar characteristics are obtained for greater cross-section of
the waveguide (α = 0.3 cm). As we can notice, for the Gaussian mirror having
soft profile of the reflection (i.e., wg = 1 cm), in opposite to the previous case,
there exists only one position of the Gaussian mirror as well as of the classical
mirror, which corresponds to the dual case III. For greater value of w g Gaussian .

mirror should be set at the waveguide aperture and classical mirror should be set
at dual case III position to provide maximal output power level (for given pumping
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Fig. 6. Small signal gain go as a function of the normalised to the mirror curvature
radius classical mirror position z1/Rc (solid line) and Gaussian mirror position z2/R g

(dashed line) for three values of the Gaussian mirror parameter wg . Classical mirror
reflectivity is equal to pc = 1.0. Gaussian mirror peak reflectivity is equal to po = 0.9.
Both end mirrors curvature radii are equal to R c = Rg = 200 cm. Waveguide length
is equal to L = 100 cm. Waveguide cross-section is equal to a = 0.30 cm. Normalised
output power is equal to Pout/Ps = 0.01.
Fig. 7. Small signal gain g o as a function of the normalised to the mirror curvature
radius classical mirror position zi/Rc (solid line) and Gaussian mirror position z2/R g

(dashed line) for three values of the normalised output power Pout/Ps. Classical mirror
reflectivity is equal to pc = 1.0. Gaussian mirror peak reflectivity is equal to po = 0.9.
Gaussian mirror parameter is equal to w, = 1.0 cm. Both end mirrors curvature radii
are equal to Rc = Rg = 200 cm. Waveguide length is equal to L = 100 cm. Waveguide
cross-section is equal to α = 0.18 cm.

level). If we compare Figs. 5 and 6 we also notice that the difference between the
characteristics obtained for various positions of the Gaussian and classical mirrors
becomes smaller for the waveguide having greater cross-section.

In Fig. 7 the small signal gain g0 is plotted as a function of the normalised
(to the curvature mirror radius) end mirror position (solid lines correspond to the
classical mirror and the dashed lines illustrated the effect of Gaussian mirror) for
a normalised output power, as a parameter. The Gaussian mirror parameter is
equal to wg = 1 cm and the height (width) of the waveguide is a = 0.18 cm. In
general, the laser characteristics show that the optimal position of the end mirrors
corresponds to the dual case I and II configurations (because of the gain saturation
effect it is slightly shifted in comparison with that predicted by linear analysis).

However, when we set an additional device between the waveguide and the
Gaussian or classical mirror, an optimal position of the additional device (i.e., at
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Fig. 8. Small signal gain go as a function of the normalised to the mirror curvature
radius classical mirror position z1/Rc (solid line) and Gaussian mirror position z2/R g

(dashed line) for three values of the normalised output power Pout/Ps. Classical mirror
reflectivity is equal to pc = 1.0. Gaussian mirror peak reflectivity is equal to po = 0.9.
Gaussian mirror parameter is equal to wg = 1.0 cm. Both end mirrors curvature radii
are equal to Rc = Rg = 200 cm. Waveguide length is equal to L = 100 con. Waveguide
cross-section is equal to α = 0.24 cm.

which end of the waveguide it is set) depends on the output power level. As we can
notice, for the higher output power levels (Pout/Ps > 0.1) better power efficiency
of the laser system is obtained, when the Gaussian mirror is moved away from
the waveguide and the classical mirror is set at the aperture of the waveguide.
When the waveguide has a greater cross-section, see Fig. 8, the characteristics are
less sensitive to the fact, which mirror changes its position with respect to the
waveguide.

4. Conclusions

In this paper we have presented an approximate analysis of nonlinear oper-
ation of hollow-waveguide lasers having Gaussian mirror. Using energy approach
we have derived an approximate formula that relates the small signal gain in the
active medium to the output power and characteristics parameters of the laser
system. The formula can be applied to study arbitrary laser configuration having
end mirrors with arbitrary radii of curvature as well as Gaussian mirror parameter.
Moreover, when our model is used, it is also possible to investigate the effect of
extradevices introduced into the cavity on power efficiency of laser system.

It was shown that the optimal position of the Gaussian mirror corresponds
to the dual case I, II and III case only for moderate and big values of the Gaussian
mirror parameter (i.e., when Gaussian mirror has "soft" profile of the reflectivity
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coefficient). For sharp profile of reflection the Gaussian mirror should be set at the
aperture of the waveguide but, in general, coupling losses are greater than for the
classical mirror. The obtained laser characteristics showed that with the increase
in Gaussian mirror parameter the higher pumping level is required to maintain
the given output power level. Thus, in general, we should use the Gaussian mirror
with soft profile of the reflection coefficient in order to obtain compromise between
high power efficiency of the laser and high quality of the output beam.

Moreover, it was shown that for the higher output power levels, when an
additional device is set into cavity, better power efficiency of the laser system
is obtained when the Gaussian mirror is moved away of the waveguide. Further-
more, for increasing cross-section of the waveguide the difference between the laser
characteristics obtained for different position of the classical mirror and Gaussian
mirror becomes smaller.

It is also worth noting that our model can be used to study the effect of
non-uniform spatial-gain distribution (depending on pumping conditions) and its
influence on the optimal laser cavity configuration for maximal power efficiency of
the laser system.
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