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A set of coupled mode differential equations which describe the light
propagation in an optical fiber containing a photoinduced Bragg grating is
derived. Reflection spectra based on numerical solution to these equations
are presented when basic grating parameters are varied. In addition, the
influence of these parameters on the maximum reflectivity and 3 dB band-
width is examined. Finally, reflection spectra of the chirped grating and the 	
grating with spatially modulated refractive index changes are discussed.
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1. Introduction

Single-mode fibers have been firmly established for an efficient information
transport in the telecommunications since 1950s when the first optical fibers with
a cladding layer were fabricated. In order to use the optical fibers for the future
high-speed long-haul communication systems, a number of techniques (to boost
the performance and overcome some detrimental limitations) has already matured
(as optical fiber amplifiers based on Er+-doped fibers) or are currently pursued
(such as solitons or photosensitive fibers).

Photosensitivity in Ge-doped optical fibers was reported by Hill et al. [1] for
the first time. They observed the formation of a periodic permanent or quasiper-
manent variation of refractive index which appeared when two strong counter-
propagating beams (one being launched into the fiber and the other one being
reflected from the output end of the fiber) of a blue-green light interfered. The
periodic variation of the refractive index formed a grating with the spatial period
of one-half wavelength of the writing radiation. This procedure, however, cannot
be applied to form a grating with the period around 1.55 µm which is the spectral
region where optical fibers exhibit the smallest absorption losses (around 3.6% of
the input power per 1 km). The fabrication of optical fiber gratings at longer wave-
lengths has become feasible only after the advent of an external writing technique
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[2] using two interfering UV beams. Moreover, when exposing an optical fiber to
UV radiation a stronger and more stable modulation of the refractive index oc-
curs. This writing technique has been further improved using the side holographic
exposure with a phase mask [3]. The phase mask technique is flexible, compact,
stable, and relaxes stringent requirements on spatial and temporal coherence of
the writing beam.

A fiber grating can also be formed using a single high-density UV optical
pulse that physically damages the fiber core [4, 5]. Using this technique a very large
index modulation can be reached. However, there are some problems with extensive
short wavelength out-of-band losses due to radiation mode coupling [4, 5]. This
sort of fabrication could be well used during the process of fiber manufacturing
before the fiber is coated [6].

It was also found that a hot hydrogen treatment enhances the photosensi-
tivity of Ge-doped fibers [7]. Moreover, the use of a high-pressure (up to 800 bar)
hydrogen atmosphere enables to obtain index changes greater than 0.01 [8]. Ex-
cept Ge-doped fibers, strong photosensitivity has also been reported in tin-doped
phosphosilicate fibers [9].

A multitude of different applications of optical fiber gratings have already
emerged. They can be simply used as narrow-band reflectors (see e.g. [10, 11]).
Another application concerns fiber grating semiconductor lasers [12] that allow
multi-gigabit modulation with a low chirping due to the effects of the external
cavity length (around 10-20 mm). It is also possible to . produce fiber grating lasers
either by splicing the reflection grating to an Er-doped fiber [10] or by writing
the grating into other rare-earth-doped fibers [13, 14]. Chirped Bragg gratings in
optical fibers may provide a tool for dispersion compensation [15, 16] or pulse
compression [17]. The fiber gratings can tap the radiation out of the optical fiber
to equalize the saturated gain of erbium doped fiber amplifiers within ±0.3 dB [18].
Finally, the fiber gratings can act as mode converters [19] that couple one guided
mode into another one. Using fiber gratings as the mode couplers the parameters
of optical frequency filters can be greatly improved [20]. A comprehensive review of
fiber gratings together with their numerous applications can be found in [21]. It is
evident that the profound understanding of optical fiber gratings is very important
for projection of future communication and sensorial systems.

The aim of this paper is to present a theoretical analysis Of the fiber grating
response when its length and refractive index changes amplitude are varied. We
also show the reflection spectra of a chirped grating and demonstrate the effect of
spatial modulation of refractive index variation.

2. Coupled mode equations
In this section we shall derive two coupled mode differential equations that

describe the energy transfer between the forward and backward travelling waves.
We assume that the permittivity changes of a silica fiber are proportional to

the intensity of the writing UV radiation

where o- is the Bragg grating encoding coefficient. As it has already been mentioned
the optical fiber grating can be formed when two UV beams interfere at the fiber.
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If considering the irradiation of the fiber by two symmetric UV beams possessing
a uniform intensity distribution and containing an angle (p, the interference pattern
created along the fiber can be described by

where 10 is the light intensity of interfering UV beams, respectively, is is a coefficient
depending on the polarization properties of interfering beams, 0 < κ < 1, and h is
a phase constant. In the special case, if both interfering UV beams are polarized
perpendicularly to the incidence plane, it holds that x = 1 and Eq. (2) takes a more
simple form

This special case will be considered in the next treatment only.
Using Eq. (3) the optical fiber grating is described in the following way:

where y = kuv sin(φ/2) = 2π/Λ (Λ/2 is the actual grating period) and &max =
4σI0 is the amplitude of the permittivity variation. For simplicity, a simple sine
De grating is considered here, meaning that the phase in Eq. (3) was put to be 

= fir.
If we consider purely monochromatic linearly polarized light, the Helmholtz

equation is

where e = 1 + x ( " is the linear permittivity of the virgin medium and k0 = wo je.
In this paper the effect of Kerr nonlinearities is ignored.

We shall consider coupling of the forward and backward propagating modes
owing to the perturbation of the permittivity of the fiber core. In an isotropic
medium the perturbation of e is a scalar quantity and, consequently, the only
couplings TE to TE or TM to TM modes are possible but certainly the coupling
TE to TM mode is forbidden [22]. For the sake of simplicity, we shall consider the
coupling TE to TE modes.

The electric field vector can be expressed as a superposition of two modes
propagating in the opposite direction. We suppose that the two modes are identical,
only their amplitudes are different. Hence, we can write

E(x, y, z) = F(x, A+ (z) exp(—iβ0z) d- F(x, y)A — (z) exp (i,30 z), (6)
where A+ is the amplitude of the wave that travels in the positive direction while
A — stands for the wave travelling in the opposite direction, and β 0 is the mode
propagation constant. Both amplitudes are slowly varying functions of z so it holds
that

The coupling between the modes considered can be effective only if they are
phase matched. We define the phase difference as
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where neff is the guided mode effective index. The phase matching condition is sat-
isfied for β0 = n . Hence, if we put Eq. (6) into Eq. (5) we select only those terms
which have the same z phase dependence, i.e. those that contain either exp(—iβ0z)
or exp (iβ0z) terms. The remaining terms are dropped because they describe neg-
ligible energy exchanges. In this way we arrive at two differential equations: one
for the forward propagating mode and the other one for the backward propagating
mode. In the following treatment we shall consider only the forward propagating
mode since the equations for the backward propagating one can be derived in
the same manner. After some mathematics we get two differential equations for
F(x, y) and A+(z),

where we have neglected, with the respect to the condition (7), the second deriva-
tive of A+.

The permittivity changes are related to the refractive index changes in the
following way:

During the grating fabrication we can determine the amplitude of the refractive
index changes Δnmax, which is assumed to be small (Δnmax « n). Hence, the
amplitude of the permittivity variation can be expressed as

Equation (9) can be solved using the first-order perturbation theory [23]. In
the first order Δnmax does not affect the modal distribution F(x, y) but is related
to the eigenvalue 0 , which can be determined by means of Eq. (9) as follows [24],
as

The integration in the numerator on the right hand side of Eq. (15) is to be taken
over the core cross-section area because Δnmax is zero in the cladding region. This
assumption is based on the fact that the refractive index perturbation exists only
in the fiber core since it is doped with germanium.

We are now ready to write coupled mode differential equations for the com-
plex field amplitudes of propagating modes. If we approximate β 2 —β0 in Eq. (10)
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by 2β0 (β-β0) = 2406.β and perform the same procedure for the backward prop-
agating mode we get

Equations (16) govern the propagation of monochromatic waves through
the fiber grating. Depending on the phase difference ó we observe the drop in the
forward propagating mode which is accompanied by the concurrent transfer of the
energy to the backward propagating one.

The Bragg grating can also be described as a sequence of exp(—γz2) profiles
truncated in such a way that the grating would have the required period. If we
expand the function exp[— γ(z — Λ/4)9 into the Fourier series within the interval
(0, Λ/2)

then the coefficients Δβ and K on the right hand side of Eqs. (16) are to be
multiplied by 2c0 and 4c 1 respectively. This procedure can be, in general, applied
to any grating profile.

Finally, we introduce one parameter — the grating strength KL where L
is the grating length. The grating strength is the dimensionless product which
pertains to the maximum reflectivity. We notice that after the substitution K =
ψK' and L= L'/ψ, where is an arbitrary constant, the grating strength remains

unchanged. Hence, once we know the maximum reflectivity for a particular value
of Δnmax and L we immediately know it for other values of these parameters which
can be derived using the above substitution.

In the next sections we present our results of the numerical solution to the
coupled mode differential equations (16) under various conditions.

In order to compute reflection spectra we have used the Runge—Kutta method
of the third-order subject to the following boundary conditions for the normalized
complex field amplitudes:

The reflectivity and transmissivity are defined as
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We shall demonstrate how two important characteristics namely the maxi-
mum reflectivity Rmax and the 3 dB bandwidth depend on the basic fiber grating
parameters: the amplitude of refractive index changes Δnmax and the grating
length L. We also present reflection spectra when the refractive index variation
amplitude Δnmax is modulated by the function exp(—αz2) and when the grating
is chirped.

The following parameters of a step-index single-mode fiber were used for
the computation: the refractive index of the core n 1 = 1.447 and of the cladding
n2 = 1.442; the radius of the core for the single-mode operation at the input
wavelength A = 1.55 µm was taken a = 4.7 µm. The Bragg wavelength was
computed to be A= 1.073 µm.

3. Ordinary grating

We start with varying the grating length L and keeping the amplitude of
refractive index changes Δnmax constant. Increasing L we increase the grating
strength KL and, hence, the coupling becomes more efficient. The reflection spec-
tra for three various grating lengths as functions of the difference 6a = a — λ0/neff 
are presented in Fig. 1. Not only does the maximum reflectivity increase with in-
creasing L but the sidelobes do so as well. We observe that the peak reflectivity
does not occur for 6A = 0. There is the following reason for that. The reflection
wavelength can be calculated from the Bragg condition

i.e. when considering zero phase difference S in Eq. (8). Because the introduced
refractive index changes are only positive (the refractive index increases with inten-
sity of UV writing radiation) the light "sees" higher refractive index in the grating
compared with its virgin parts. Therefore, the maximum reflectivity occurs for red
shifted wavelength .Am:

We see that the Bragg condition depends upon the UV-intensity via the refractive
index variation amplitude Δnmax. At Am the reflected light is all in phase. For the
wavelengths being far from am the reflected light is out of phase so that the light
propagates throughout the grating without any reflection.

The maximum reflectivity Rmax and the 3 dB bandwidth as functions of L are
depicted in Figs. 2 and 3, respectively, for three different refractive index changes
amplitudes. Both the quantities saturate for large values of L. The saturation value
of Rmax is one and the saturation value of the 3 dB bandwidth depends on Δn max .
The greater the value of Δn max the more quickly they saturate.

As the next step we vary the amplitude of refractive index changes Δnmax
while. L is kept constant. The reflection spectra for three different amplitudes
Δnmax are shown in Fig. 4 that well illustrates the red-shift of am. Looking at

Figs. 5 and 6 we find similar behaviour to the previous case: the grating strength
and the maximum reflectivity Rmax increase but the 3 dB bandwidth increases in
this case as well. At larger Δnmax the reflection spectra have a flat close-to-one
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Fig. 1. The reflection spectra for different lengths of the uniform Bragg grating for
Δnmax = 0.001.

Fig. 2. The maximum reflectivity as a function of the grating length L for different
values of Δnmax •

reflectivity for a fairly large interval of wavelengths while the sidelobes are more
pronounced.

As can be seen from Fig. 4, the reflectivity at a given wavelength (e.g. the
wavelength corresponding to δλ= 2 nm) depends on the value of Δn max. The light
at this given wavelength is only slightly reflected for Δnmax = 0.001. Increasing
the value of Δnmax to 0.005 we achieve almost 100% reflectivity whereas decreasing
the value of Δn max we scarcely obtain any reflection. The propagation of optical
pulses would complicate the situation since the refractive index (as a function
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Fig. 3. The 3 dB bandwidth as a function of the grating length L for different values
Of Δnmax.

Fig. 4. The reflection spectra for different refractive index changes amplitudes On max

of the uniform Bragg grating for L = 1000 pm.

of pulse intensity, see [24]) increases in the center of the pulse due to the Kerr
nonlinearity. In addition, the new phenomena like gap solitons may appear [26].

The following conclusions are obvious. If we are interested in very small 3 dB
bandwidths we should work with long gratings possessing small refractive index
changes. On the other hand, to design a grating with a broad band reflectivity it
is necessary to increase Δnmax according to the desired bandwidth.

In the conclusion of this section we would like to stress that if the refractive
index perturbation was modelled using just sin(ηz) instead of sin 2 (ηz) grating
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Fig. 5. The maximum reflectivity as a function of the refractive index changes ampli-
tude Δnmax for different grating lengths.

Fig. 6. The 3 dB bandwidth as a functions of the refractive index changes ampli-
tude Δnmax for different grating lengths.

profile then the maximum reflectivity would appear at δλ = 0 for any value of
Δnmax so that the Bragg condition would be independent of Δ nmax.. However,
sin(ηz) is not the appropriate function because it does not realistically describe
the grating formation. The light intensity is always positive and does not take
negative values as sin(ηz) does. The function sin 2 (ηz) describes the one-photon
absorption which is responsible for the grating formation if using UV radiation. If
we use blue-green light then we have to deal with two-photon absorption, which
is a much weaker process, and the sin 2 (ηz) should be replaced by sin4(ηz).
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4. Spatially modulated grating
It is well known from the theory of coherence of light that the interference

pattern is spatially modulated depending on the spatial coherence degree (see e.g.
[27, 28]). We suppose, for the sake of simplicity, that the interference pattern is
given by the function

where the Gaussian function M(z) = exp[—α(z — L/2) 2 /L 2] describes the spatial
modulation of the interference pattern. The parameter α pertains to the strength
of interference fringes modulation.

In the next treatment we shall compute the response of the grating whose
amplitude of refractive index changes is spatially modulated. Thus, the right hand
sides of Eqs. (16) are to be multiplied by the function M(z). According to the above
definition the strongest modulation occurs at both ends of the grating whereas it
is equal to zero at the grating center. Two reflection spectra are shown in Fig. 7.
The spectrum with the highest R max pertains to the index grating without any
modulation and is to be compared with the other two ones which present the
response of the modulated index grating (i.e. for α > 0). Increasing α we decrease
the maximum reflectivity because the interaction length for any wavelength gets
smaller. At the same time the position of λM slightly moves to the left because the
applied modulation affects the mean value of the refractive index changes, which
should otherwise be ΓΔnmax/2. The 3 dB bandwidth first narrows a bit but then
monotonously increases. The results are summarized in Figs. 8 to 10.

It was shown [29] that for the frequencies smaller than the bandgap frequen-
cies the grating modulated with a Gaussian profile behaves like a Fabry—Perot

Fig. 7. The reflection spectra for different values of the modulation parameter a (L =
2000 µm and 

Δnmax

( = 0.001).
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Fig. 8. The maximum reflectivity as a function of the modulation parameter α (L =
2000 µm and 

Δnmax

 0.001).

Fig. 9. The 3 dB bandwidth as functions of the modulation parameter α (L = 2000 µm
and 

Δnmax

 = 0.001).

interferometer. Hence, the interference maxima, when condition for constructive
interference is satisfied, appear at the left hand side of the reflection spectra.

Chirped gratings have become one of the means how to suppress the crippling
effect of dispersion in optical fibers [15, 16]. In order to introduce the grating chirp
we modify the phase difference in the following way:
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Fig. 10. The value of the difference λM — λBragg as a function of the modulation pa-
rameter a (L = 2000 µm and

Δnmax

 = 0.001).

Fig. 11. The reflection spectra for different chirp parameters C < 0 (L = 2000 µm,
Δnmax = 0.001, and α = 0).

where C [nm -1] is the chirp parameter. Varying C we get the spectra displayed
in Fig. 11 (for positive values of C the spectra are identical but blue-shifted).
If C is negative A increases and vice versa. Increasing ICI the grating bandwidth
increases. It is obvious that due to the smaller interaction length at any wavelength
the maximum reflectivity drops. The 3 dB bandwidth increases due to the chirp.

The chirped grating can provide another way how to form a broadband .

filter. Simply by increasing

Δnmax

 we compensate for the lower reflectivity. We
have found that for C = —0.233 and Δnmax = 0.003 the maximum reflectivity
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Fig. 12. The reflection spectra for different chirp parameters C > 0 (L = 2000 μm,

Δnmax

 = 0.001, and α = 0).

Fig. 13. The reflection spectra of a chirped grating: L = 2000 pm, Δnmax = 0.003,
and C = -0.233. The spectrum 1 is for α = 0, the spectrum 2 is fora α= 4 and M(z)
positioned at z = 0.3L, and the spectrum 3 is for a = 4 and M(z) positioned at z = 0.9L.

Rmax approaches one and 3 dB bandwidth increases to = 3.7 nm compared to
the uniform grating for which the 3 dB bandwidth is = 2.5 nm. For determining
AM both the chirp and the value of Δnmax have to be combined. The spatial
modulation further complicates the situation. Increasing α the 3 dB bandwidth
decreases (for α = 4 down to 3 nm). Numerical calculations show that the
position of the maximum of M(z) also plays an important role. If the maximum of
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M(z) is closer to the input end of the fiber grating (z = 0) AM gets blue-shifted and
3 dB bandwidth is further reduced. Moreover, the spectrum is distinctly smoother
and without sidelobes. If the maximum of M(z) is closer to the output end of
the fiber grating (z = L) the reflection peak becomes distorted. By moving the
profile M(z) within the grating we can select those parts of the grating that
significantly reflect light and suppress the unwanted ones. We have found that
for α > O the spectra become noticeably asymmetric. The asymmetry contradicts
the numerical calculation in [30] but it is in the agreement with the measured data
in [16]. The above discussion is summarized in Fig. 12. The grating parameters are:
L = 2000 pm, Δnmax = 0.003, and C = —0.233. The reflection spectra (Fig. 13)
correspond to α = 0, α = 4 with the M(z) maximum positioned at z = 0.3L, and
α = 4 with the maximum of M(z) positioned at z = 0.9L.

5. Conclusion

We have derived the set of coupled mode differential equations that describe
the coupling of the forward mode to the backward one in an optical fiber due to
the presence of the periodic refractive index changes. The procedure was based on
the solution to the nonlinear wave equation for the optical fiber. The refractive
index changes were treated as a small perturbation. The coupled mode equations
were solved numerically and the results were presented in the form of several plots.
First, the grating length and the amplitude of perturbation were varied and their
influence on the maximum reflectivity and 3 dB bandwidth were demonstrated.
It has been found that the increase in the grating length enhances the maximum
reflectivity, whilst the increase in the refractive index changes amplitude not only
enhances the maximum reflectivity but it also causes a red shift of the reflectiv-
ity peak. The 3 dB bandwidth drops with the increasing grating length and it
saturates at a value that depends on the perturbation amplitude. On the other
hand, the increase in the grating amplitude increases the bandwidth. Second, both
the fiber grating period and the refractive index changes amplitude were spatially
modulated. It has shown that the spatial modulation of the grating amplitude
suppresses the occurrence of sidelobes which is accompanied with the drop in the
maximum reflectivity. When the fiber grating is chirped then different parts of the
grating reflects the light at different wavelengths. This results in the drop of the
maximum reflectivity and the reflection spectra become broadened.
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