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POLARIZATION IN OPTICAL FIBERS
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Physical origin of polarization phenomena in highly birefringent optical
fibers including nonlinear optical effects is discussed and their impact on
applications to polarimetric optical fibers sensors is underlined.
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1. Introduction

Optical fibers exhibit particular polarization properties. The guided electro-
magnetic fields in optical fiber waveguides are called inhomogeneous plane waves
since their amplitudes are not stable within the plane wave and the fields are
characterized, in most cases, by non-transverse components.

In the description of polarization phenomena in optical fibers there are gener-
ally two approaches [1]. The first one treats an optical fiber as an optical waveguide
in which light being a kind of electromagnetic wave of optical frequencies can be
guided in the form of waveguide modes. This approach identifies basic polariza-
tion eigenmodes of a fiber and relates them to the polarization state of the guided
light. Changes in output polarization are described in terms of polarization-mode
coupling due to birefringence changes acting as perturbations along the fiber.

Another approach treats an optical fiber like any other optical device which
transmits light and the fiber can be divided into separated sections behaving like .
polarization state shifters. Here, polarization evolution in a fiber can be described
by one of the three general formalisms: by the Jones vectors and matrices formal-
ism, by the Stokes vectors and Mueller matrices formalism, or by the Poincaré
sphere representation.

Since optical fibers allow very large propagation distances even very small
birefringence effects can cumulate along fiber and their random distribution over
the large lengths causes polarization properties of guided light generally difficult
to determine.

Although polarization effects in optical fibers have initially played a minor
role in the development of light-wave systems their importance is still growing.
Before 1980 it was impossible to exploit the polarization modulation in a fiber for
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sensing applications since the conventional single-mode fibers manufactured for
telecommunication use do not hold the optical wave amplitude in a particular po-
larization state. The appearance of highly-birefringent (Hi-Bi) polarization-main-
taining (PM) fibers has created a novel generation of fiber-optic sensors known
as polarimetric fiber sensors which utilize polarization (phase) modulation within
these fibers or at their output due to various external perturbations describing the
physical environment.

2. Polarization phenomena in optical fibers
2.1. Polarization of the optical fiber modes

The exact description of the modes propagating in fiber is complicated, since
they are six hybrid-field components of great mathematical complexity.

The modes with the strong electric E, field compared to the magnetic Hz
field along the direction of propagation (z axis) are designated as EH modes.
Similarly, those with a stronger H,, field are called HE modes. These modes are
hybrid since they consist of all six field components (3 electric and 3 magnetic)
and possess no circular symmetry. The propagating modes are discrete and require
two indexes (1,p) to be identified: HElp , EHlp .

For 1 = 0, the hybrid modes are analogous to the transverse-electric (TE)
and the transverse-magnetic (TM) modes of planar waveguides and there exist two
linearly polarized sets of modes circularly symmetric with vanishing either the E or
H longitudinal field components: TE0p (E, = 0) and TM0p (H, = 0). The lowest
order transverse modes TE01 and TM 01 have cutoff frequencies: V = V = 2.405,
where V is the normalized frequency defined as

where a is the core radius, A is the free space wavelength, nco (ncl) is the refractive
index of the fiber core (cladding), n2co0 - n 2cl=NAis the numerical aperture of
the fiber used in optics to express the ability of the system to gather the light.

The lowest order mode of a cylindrical waveguide is the HE11 mode which
has zero cutoff frequency. The field distribution E(r, t) corresponding to the HE11
mode has three nonzero components Ex , Ey , and E, (in Cartesian coordinates)
and among these, either Ex or Ey dominates. However, even a single-mode fiber
is not truly single-mode since the electric field of the HE11 mode has two po-
larizations orthogonal to each other that constitute two polarization modes of a
single-spatial-mode fiber.

A significant simplification in the description of these modes is based on the
fact that most fibers for practical applications use core materials whose refrac-
tive index is only very slightly higher than that of the surrounding cladding, i.e.
nco — ncl « 1.

This assumption leads to the so-called "weakly-guiding approximation" in
which instead of six-component field only four field components need to be consid-
ered. For a weakly-guiding fiber (n co =ncl), there are approximate mode solutions
defined as linearly polarized LPlp modes of different azimuthal (1) and radial (p)
mode numbers. The idea of LP modes was originally introduced by Gloge [2] who
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showed that for the lower-order modes, the combination modes have the electric .

field configuration resembling a linearly polarized pattern.
The LPlp modes count the group of modes appearing together as a single

mode and they are an example of pseudo-modes with the property of changing
their cross-sectional intensity and polarization pattern as the mode propagates.
However, the LPlp modes are superpositions of the true, generally hybrid, wave-
guide modes namely HEl+1,p and EHl_1 , p modes.

In an isotropic fiber the modes of zero azimuthal order (1 = 0) are twofold
degenerate: two polarization modes LPG and LPop are possible, while modes of
non-zero azimuthal. order (l > 0) are fourfold degenerate: twofold orientational
degeneracy (even and odd), and twofold polarization degeneracy (x and y). In this
case four polarization modes, namely LPlp, LP lp , LP1p'°, and LPlp° can be guided
along the fiber.

In the isotropic case the single-mode fibers (normalized frequency param-
eter V < 2.405) with perfect circular cores support two degenerated orthogonal
polarization modes HE1 1 and HE1 1 of the propagation mode HE11 with the same
spatial intensity distribution, which is exactly the linearly polarized LP01 mode
in the weakly guiding approximation. The fundamental or the lowest order HE1 1

mode, named after Gloge [2] the LP01 mode, exhibits an amplitude of a revolu-
tionary symmetry and may be linearly polarized either along the x or the y axis.
Its two degenerated polarization modes LP0 1 and LP0 1 have the same propagation
constant a on a perfect cylindrically symmetric fiber. These polarization modes
constitute a basis of two orthogonal and normalized states of linear polarizations 
and the electric fields of these modes are given by

The normalization constant amplitude E0 can be determined from the power re-
lation [3]:

where z0 = ωu/k0 is the plane-wave impedance in a vacuum, J/ and Ki (1 = 0, 1)
are the Bessel functions of the first kind and the modified Bessel functions, respec-
tively, and w is the angular frequency corresponding to the free space wavelength A.

The next four higher-order modes: TE01, TM01,HE21even  and HE210dd modes
(2.405 < V < 3.832) have slightly different propagation velocities and almost the.
same cross-sectional optical intensity distributions. In the weakly guiding approxi-
mation these four second-order modes become fourfold degenerate and are denoted
as LP 1 1 modes. The field distributions of four independent linear combinations of
the waveguide modes: TM01 — HE21, TE01 — HE21, TE01 -ł- HE2 1, TM0 1 HE2 1

presented in Fig. 1 constitute the linearly polarized second-order (LP 11 ) modes as
a single linear electric field vector. Fibers operating in this regime are two-mode
(or bi-modal) fibers. In fact, the two-mode fiber supports six modes: two polar-
izations of the fundamental LP 0 1 mode and two polarizations of each of two lobe
orientations (even and odd) of the second-order LP11 mode: LP1 1 and LP11.
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Fig. 1. The electric field vector of the waveguide modes, the TE01, TM01, HE21 (two
polarizations) and their four independent linear contributions to the LP 11 spatial mode.

2.2. Optical fibers sensitive to polarization effects: Hi-Bi PM fibers

An ideal isotropic fiber propagates any state of polarization launched into
the fiber unchanged. However, the realization of the perfectly isotropic single-mode
fiber bores huge manufacturing requirements as regards the ideal circularity of the
core as well as lack of mechanical stress. Since in the ideal cylindrical fiber the
fundamental LP0 1 mode contains two degenerated orthogonally polarized modes .

they are propagating at the same phase velocity.
In real single-mode fibers which possess nonzero internal birefringence, both

orthogonally polarized modes have randomly different phase velocities, causing
fluctuations of the polarization state of the light guided in the fiber.

In highly-birefringent polarization-maintaining fibers, the difference between
the phase velocities for the two orthogonally polarized modes is high enough to
avoid coupling between these two modes. Fibers of these class have a built-in
well-defined, high internal birefringence obtained by designing a core and/or clad-
ding with noncircular (mostly elliptical) geometry, or by using anisotropic stress
applying parts built into the cross-section of the fiber. Various types of Hi-Bi
polarization-maintaining fibers are presented in Fig. 2.

Fig. 2. Various types of Hi-Bi polarization-maintaining fibers: (a) elliptical core,
(b) elliptical internal cladding, (c) bow-tie, (d) PANDA.
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These include elliptical-core (a), stress-induced elliptical internal cladding
(b), bow-tie (c) or PANDA (d) fibers. The magnitude of the internal birefringence
is characterized by the beat length of the two polarization modes

and is responsible for phase difference changes along the longitudinal z axis of
the Hi-Bi fiber. The spatial period of these changes reflects the changes in the
polarization states along the fiber.

Since linearly birefringent (anisotropic) optical fibers have a pair of preferred
orthogonal axes of symmetry (birefringence axes), two orthogonal quasilinear po-
larized field components HET ' and HEL of the fundamental mode HE11 (LP01)
which propagate for all values of frequency (wavelength) have electric fields that
are polarized along one of these two birefringence axes. Hence, light polarized in a
plane parallel to either axis will propagate without any change in its polarization
but with different velocities. However, injection of any other input polarization
excites both field components HET '  and HEL and as these two orthogonal mode
components are characterized by different propagation constants andand βy (de-
generacy of the fundamental mode is lifted) they run into and out of phase at
a rate determined by the birefringence of the Hi-Bi fiber producing at the same
time a periodic variation in the transmitted polarization state from linear through
elliptic to circular and back again.

The relevant feature of Hi-Bi two-mode fibers is that only two second-order
modes (LP11) propagate instead of four. This means that over a large region of the
optical spectrum the two-mode Hi-Bi fiber guides only four polarization modes: two
orthogonal linearly polarized fundamental LPL, LPL eigenmodes and the even
second-order LP11, LP11 spatial modes whose propagation constants we denote by β x

, βy,βx  , βy, instead of six as in case of isotropic fibers with perfect circular
cores.

Fig. 3. Propagation constants for the lower-order waveguide and LP modes of a Hi-Bi
fiber.
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Figure 3 presents propagation constants for the lower-order waveguide and
LP modes of a linearly birefringent Hi-Bi fiber, where ΔβM = βTM — βHE, ΔβE  =
β
TE — βHE, and β = (βTM + 2βHE + βTE)/4 = (fie + „30 ) 2 , βTM — βHE, and
Δβ0  = /Ó —

2.3. The Jones formalism
To describe quantitatively polarization transformation due to birefringence

changes (intrinsic and induced) in Hi-Bi fiber a 2 x 2 unitary complex matrix —
the Jones matrix formalism [4] which is limited to the strictly monochromatic light
sources — is applied

where λ is the wavelength of propagating light, M is propagation matrix depending
on the physical environment represented by vector V and usually expressed as a
product of three terms [5]

where T is the scalar transmittance, denotes the mean phase retardance and J
is the birefringence (Jones) matrix of the fiber. The matrix becomes the identity
matrix I in case of an isotropic fiber with a perfect cylindrical symmetry.

For a linearly birefringent fiber

where ΔΦ denotes linear relative phase retardance between the eigenmodes and
fiber behaves like a simple linear retarder.

3. Birefringence in optical fibers

An ideal isotropic fiber has no birefringence. It propagates any state of po-
larization launched into the fiber unchanged.

Real fibers possess some amount of anisotropy owing to an accidental loss of
circular symmetry. This loss is due to either a noncircular geometry of the fiber
or a nonsymmetrical stress field in the fiber cross-section.

When birefringence is introduced into an isotropic fiber, the circular sym-
metry of the ideal fiber is broken thus producing the anisotropic refractive index
distribution into the core region. The asymmetry results from either intrinsic bire-
fringence including a geometrical deformation of the core and stresses induced
during the manufacturing process or material anisotropy due to induced (extrin-
sic) elastic birefringence.

3.1. Intrinsic birefringence

Intrinsic birefringence is introduced in the manufacturing process and is a
permanent feature of the fiber. It comprises any effect that causes a deviation from
the perfect rotational symmetry of the ideal fiber. A noncircular (elliptical) core
gives rise to geometrical (shape) birefringence, whereas a nonsymmetrical stress
field in the fiber cross-section creates stress birefringence. Stress birefringence is
induced by the photoelastic effect during the fiber manufacturing process.



Polarization in Optical Fibers 755

Asymmetrical lateral stresses may also be induced by surrounding the cir-
cular core by stress applying parts — zones having bow-tie shapes (bow-tie Hi-Bi
fibers) or two circles (PANDA Hi-Bi fibers).

3.2. Induced (extrinsic) birefringence

Birefringence can also be created whenever a fiber undergoes elastic stresses
resulting from external perturbations such as hydrostatic pressure, longitudinal
strain, squeezing, twisting, bending, etc. acting on the fiber from outside. The
perturbation induced in the permittivity tensor through the photoelastic effect lifts
the degeneracy of the linearly polarized modes and induces extrinsic birefringence.

A number of important perturbations and the resulting induced birefrin-
gences include: internal stress anisotropy, external lateral force, bending, trans-
verse electric field, elastic twist, axial magnetic field, axial strain, temperature,
hydrostatic pressure and have been described elsewhere [6-10].

3.3. Nonlinear birefringence

Nonlinear or self-induced birefringence relies on the nonlinear coupling be-
tween the orthogonally polarized components of an optical wave that changes the
refractive index by different amounts of Δn x and Δny due to nonlinear contribu-
tions j111

and defined by one component of the 4-rank nonlinear susceptibility tensor Xxxxx•
In the case of silica fibers, where the dominant nonlinear contribution is of

electronic origin, the nonlinear-index coefficient has a value 1.2 x 10 -22 m2/V or
3.2 x 10-22 m2/W.

As the wave propagates along the fiber, it acquires an intensity-dependent 
nonlinear phase given by

The first term in the brackets is responsible for self-phase modulation (SPM),
while the second term results from the phase modulation of one polarization (wave)
by the copropagating orthogonal polarization (wave) and is responsible for the
so-called cross-phase modulation (XPM). The XPM-induced nonlinear coupling
between the field components Ex and Ey creates nonlinear birefringence that
changes the state of polarization (SOP) if the input light is elliptically polarized.

The nonlinear coupling between the two orthogonally polarized components
of the optical wave is referred as nonlinear or self-induced birefringence and has .

many device applications.
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3.3.1. Optical Kerr effect

The optical Kerr effect involves transmission changes of a weak probe beam
due to nonlinear birefringence induced by a strong pump beam. In all-fiber real-
ization both pump and probe beams are linearly polarized at 45° to each other
at the fiber input. A crossed polarizes blocks the fiber output in the absence of
the pump beam. The presence of the pump modifies the phase difference between
orthogonal components of the probe at the output of a fiber of length L

where Δni = nx — ny is the linear birefringence of the fiber, nK is the Kerr
coefficient, and Epump is the pump intensity.
3.3.2. Pulse shaping

Nonlinear birefringence induced by a pulse can be used to change its own
shape. Here, the signal itself produces the nonlinear birefringence and modifies
its own SOP. If an input beam is polarized in such a way that it excites both
orthogonal polarizations, the field components and Ey change the refractive 
indices n„ and ny by the amount Δn„ and Δn y , see Eq. (8). Hence the resulting
phase shift at the fiber output is given by

and the transmitted power depends on input polarization angle and input power.
Generally, an accurate description of the polarization effects in Hi-Bi fibers

requires simultaneous consideration of both intrinsic linear birefringence and in-
duced nonlinear birefringence effects. One of the most spectacular effects is the
so-called polarization instability which manifests as large changes in the output
SOP when the input power or input SOP are changed slightly. When the input
beam is polarized close to the slow axis, the nonlinear birefringence adds to the
intrinsic birefringence and the fiber is more birefringent. However, when the input
beam is polarized close to the fast axis, the nonlinear birefringence decreases the
intrinsic birefringence. When the input power is close to the critical power defined
by

where Δβ is the intrinsic (linear) birefringence and γ is a nonlinear parameter, the
effective beat length becomes infinite (intrinsic birefringence vanishes). Further
increase in the input power makes the fiber again birefringent but the roles of the
slow and fast axes are reversed. Hence any slight changes in the input power close
to the critical power cause large changes in the output SOP.

The polarization instability first observed in 1986 by Trillo et al. [12] proves
that both birefringence axes (slow and fast) of a Hi-Bi PM fiber are not entirely
equivalent.
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4. Polarimetric fiber optic sensors

The linearly polarization eigenmodes of Hi-Bi fiber are associated with phase
retardation Φ f and Φs where subscripts f and s stand for fast and slow azimuths,
respectively. The total relative phase retardation between the two perpendicularly
polarized eigenmodes propagating in Hi-Bi fiber of a length L can be expressed as

where λ is the wavelength of the light and Δn equal to n— n s is the difference
between the effective indices of the polarization modes. This phase retardation can
be easily changed by external factors (pressure, temperature, different stresses,
etc.) and it creates the background of polarimetric fiber optic sensors (see Fig. 4).

Fig. 4. Deformation effect in a Hi-Bi fiber modulates light intensity after the analyzer:
/(z = L) = (1/2)[1 + cos 2α cos 2φ + |γil| sin α sin 2φ cos ΔΦi], where ΔΦiASP signifies the
differential phase of the light exiting the Hi-Bi fiber and γ i is a mutual correlation
function.

If quasimonochromatic light linearly polarized at an angle φ  with respect to
the fiber's x axis is launched into the fiber and an analyzer turned to an angle a
is placed at the output of the fiber then the optical intensity detected will be

Φ0 = ΔβL is the phase. The same dependence is valid for the LP1 1 to LPL
polarimetric interference but Δβ ° should be substituted instead of Δ β0 

When external perturbations are introduced, they lead to changes in the
phase Φ0 = Δβ °L of the fundamental LP01 mode (or correspondingly Φ1 =Δβ

°

L
for the LP11). Consequently, it will lead to a cosine variation of the observed inten-
sity I measured after the analyzer and that is in fact the polarization interference.
The setup is then a polarimetric sensor [13-15]. The interfering beams in this case
are the LP01 and the LP01 polarization modes. An input polarizer (if the light is
not linearly polarized) acts as a splitter and the analyzer acts as a recombines.

4.1. Polarimetric smart structures

There is at present much effort to apply polarization effects in optical fibers to
measure strain in aircrafts or concrete structures using the concept of the so-called
smart skins and structures. Smart structures and smart skins are structural com-
ponents (particularly presumed for advanced aircrafts and space vehicles) with
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networks of fiber optic sensors directly embedded within their composite mate-
rial matrices, which are valued by the aerospace industry for their light weight
and high strength. The composite material are made with epoxies or polyimides.
Structurally integrated polarimetric optical fiber sensors have emerged as an im-
portant part of sensors for smart structures applications. A more ambitious and
complex use of smart structures involves linking fiber optic sensors with real-time
computer-control system aboard advanced aircraft. In this model, fiber-optic sen-
sors are embedded in a panel to be integrated with the wing. The sensors monitor
environmental effects, such as strain and bending, around as well as within the
panel. In smart structures, fiber optic sensor become a part of the wing itself, and
are of course not affected by electrical disturbance. In response to computer out-
put, a fiber optic link could drive remote actuators. A complete smart structure
would not only detect problems but respond to them instantaneously.

Fig. 5. The Hi-Bi fiber embedded in the cylindrical epoxy structure. The lead-in and
lead-out Hi-Bi 600 fibers are spliced at different angles.

Very recently [16], a model of a polarimetric smart structure composed of
the Hi-Bi bow-tie fiber embedded in an epoxy cylinder has been demonstrated.
The Hi-Bi fiber-based structure has been subjected to selected deformation effects
mostly induced by hydrostatic pressure (up to 300 MPa) and temperature, whereas
polarization properties of the transmitted optical signal have been investigated.
The test samples were composed of the separated Hi-Bi fibers, as well as the
same Hi-Bi fibers embedded in epoxy structures (Fig. 5). It appeared that the
presence of the epoxy coating modifies the output characteristics of the Hi-Bi fiber
(mostly due to elastic properties of the structure) as well as the level of the induced
birefringence of the Hi-Bi fiber and hence influences polarization properties of the
light propagating in the fiber.

The smart structures hydrostatic pressure characteristics has a fundamental
period Tp== 100 MPa, which is twice as large as the period of the separated
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Fig. 6. Comparison of the pressure characteristics of the separated Hi-Bi fiber and the
Hi-Bi fiber-based polarimetric smart structure.

Hi-Bi-600 bow-tie fiber (Tp= 50 MPa), see Fig. 6. Hence, the presence of the
epoxy structure significantly modifies the output characteristics of the Hi-Bi fiber.
As a consequence, the induced birefringence of the embedded Hi-Bi fiber changes
less drastically than for the separated Hi-Bi fiber probably to the fact that pressure
induced stresses in the structure are separated between both the epoxy coating
and the embedded Hi-Bi fiber.

5. Conclusions

The polarization effects in optical fibers have created a background for a
novel generation of powerful and mostly sensing-oriented technique. These effects
are inherently connected with intrinsic and induced birefringences of optical fibers,
both in linear and nonlinear regimes of operation. The idea of polarization con-
trolling of the guided optical field is the important issue and can be successfully
realized only in the Hi-Bi fibers.

Identification of all the polarization phenomena existing in the Hi-Bi fibers
opens up new perspectives on basic physical effects occurring in optical fiber
waveguides and simultaneously creates new opportunities for smart sensing ap-
plications holding still great potential for optical fiber telecommunications.
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