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In a waveguide for second-harmonic generation, a linear corrugation able
to couple counterpropagating waves at the second-harmonic and/or at the
fundamental frequency can induce localization effects through the formation
of gap-simultons, i.e. bi-color gap-solitons. These can move slowly or be
stationary, collide and merge. All-optical memories are envisaged.
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A nonlinear optical response coupled with feedback mechanisms is able to
support optical multistability in various material systems and geometries. In pe-
riodically perturbed waveguides such as distributed feedback gratings (DFBG), a
Bragg resonance coupling counterpropagating fields can associate with a Kerr or a
parametric nonlinearity to give rise to transmissive nonlinear eigenstates within the
otherwise propagation-forbidden photonic bandgap [1-5]. These correspond to en-
ergy localization states in the form of stationary or slowly travelling "gap-solitons"
when properly excited, they can be viewed as optical bits trapped within the DFBG
for short- or long-term storage depending on their propagation speed. Due to the
rapidly growing interest in transparent optical networks and all-optical memories,
the possibility of stationary localized states or "still" gap-solitons in DFBGs is an
intriguing one.

In this paper, after introducing two-color quadratic gap-solitons or gap-si-
multons in a channel waveguide for frequency doubling, we address the problem
of excitation of slowly moving or stationary states in singly (srDFBG) or doubly
resonant gratings (drDFBG), showing that the feasibility of read/write all-optical
memories is within experimental reach. In a material system with a quadratically
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nonlinear response, restricting 	 with no lack of generality — to the case of
quasi-plane waves and SHG in a waveguide supporting fundamental and second
harmonic (Sil) modes of wave vectors β1 and β 2, respectively, in the presence of
a shallow corrugation of period Λ=π/β1  (Bragg resonance at the fundamental
frequency w), the overall response can be described by the four equations [3]:

where + and — refer to forward and backward propagating waves, respectively;
subscripts 1 and 2 label fundamental frequencies (FF) and SH components;
v = vg2/vg1 and κ  = κ2/ κ1 are the ratios of group velocities and Bragg coupling
strengths at 2ω and ω, respectively, Δ1,2 = Δβ1,2/(2κ1) are normalized detunings
with Δβm = 2βm — 2πm/Λ (m = 1, 2), T = κ1vg1t and ξ = κ1 z are normalized
temporal and propagation coordinates, respectively. Notice that the case = O
corresponds to a grating with no bearing on the SH fields, i.e. a singly resonant
structure (srDFBG). Starting from the linear Bloch eigenfunctions, through a mul-
tiple scales perturbative method, assuming κ > 0 and both frequencies close to
their lower (in-gap)  bandedges, system (1) reduces to [3]

with 01 and 02 the envelopes at w and 2w, respectively, and Q = 2(Δ1 + 1)
— vκ(1 +Δ2/κ) playing the role of a phase mismatch. System (2) looks like the
standard set of equations describing SHG interaction in bulk, but with the role
of time and space interchanged. Such set is known to admit stable soliton-like
solutions of the bright-bright kind which, in the present context, are stationary
or slowly-moving gap-simultons within the DFBG [6, 7]. These localized states or
simultons are the sought outcome of a balance between grating dispersion and non-
linearity [8]. Their excitation, however, can only be investigated with the aid of sys-
tem (1) via numerical propagation through the boundaries (homogeneous-linear/
periodic-nonlinear) of the structure. Upon launching a fundamental frequency
pulse of Gaussian shape Φ1  (0, τ) = A l exp[—(τ/τ0)2] at ś = O in a singly or
doubly resonant DFBG, a portion of the incident FF light is reflected together
with the SH generated at the interface and inside the grating, whereas coupled FF
and SH components can parametrically interact and propagate forward as a simul-
ton, as shown in Fig. 1 for a srDFBG and in Fig. 2 for a drDFBG. The SH field
which in Fig. 1 appears to depart from the simulton is the free SH wave, which is
not present in a drDFBG (Fig. 2) because of the SH Bragg coupling. Conversely,
FF and SH interacting components propagate at a group velocity close to 0.3vg 1.
This behaviour, indeed, is a typical one: the excitation of either an srDFBG or a
drDFBG, provided the conditions for existence are satisfied (i.e., high input inten-
sity at ω and Δ1.Δ2 < O for srDFBGs, or Δ1 =—1 and Δ2>—kfor drDFBGs),
gives origin to a slowly-travelling gap simulton [9].
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Fig. 1. Excitation of a two-color gap soliton in a singly resonant grating. The contour
levels show total FF (a) and SH (b) intensities versus space ξ and time r from Eqs. (1)
with v = 0.5, κ = 0, Δ1 = —0.9, and Δ2 = 5.

Fig. 2. Excitation of a two-color gap soliton in a doubly resonant grating. The contour
levels show total FF (a) and SH (b) intensities versus space ξ and time r from Eqs. (1)
with v = 0.5, K = 1, Δ1 = —0.9, and Δ2 = —0.9.
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The formation of a "still" simulton, however, based on intuitive consider-
ations on momentum conservation, appears nontrivial. With such constraint in
mind, an approach to forming a zero-momentum simulton is to resort to the in-
elastic collision of two counterpropagating but otherwise similar gap simultons in
a drDFBG. This process is expected to conserve total momentum and give rise
— through merging — to a zero group velocity state in the grating. Such pos-
sibility, inspired by the non-integrable nature of the governing equations and by
numerical results obtained with reference to in-phase quadratic spatial solitons
interacting with opposite transverse velocities [10], can be explored by launching
identical beams from opposite ends of the Bragg structure. Figure 3 shows that
the expected behaviour is indeed verified: two in-phase and counterpropagating
FF inputs in the grating evolve into slow simultons which, after collision, merge
in a single two-color localized state. Notice that this process, for parameters close
to those in the example, allows one to reach a final bound state carrying about
70% of the energy associated with the incoming gap-simultons, despite radiation of
energy occurring at both FF and SH [11]. In real units, a pulse duration of 100 ps
is estimated for an input peak intensity of 100 MW/cm 2 into a nonlinear crystal
with den' = 12 pm/V (e.g. KNbO3),κ1 = κ2 = 0.5 mm -1 and v9 1 = c/2. Figure 4 .
shows the collision phenomenology for two out-of-phase incoming simultons: the
merging is inefficient if they are in opposition, but holds to some extent even when
they are in quadrature. The robustness of the coalescence effect for relative phases
smaller than π/2 is a rather encouraging characteristic of the "writing" process of
a bit into this novel all-optical memory.

Fig. 3. Formation of a stationary gap soliton via the inelastic collision of two in-phase
counterpropagating low-speed solitons in a doubly resonant grating: (a) FF; (b) gener-
ated SH (here v = 0.5, κ  = 1, .Δ1 = —0.9, and Δ2 = —0.9).
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Fig. 4. Collision of two out-of-phase counterpropagating low-speed solitons in a doubly
resonant grating: (a) FF; (b) generated SH (here v = 0.5, κ  = 1, Δ1 = —0.9, and
Δ 2 = —0.9).

Fig. 5. Interrogation process of the still gap simulton formed in Fig. 3 by launching
another slowly-moving soliton. (a) FF and (b) SH components.
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Since any (classical) detection process requires an interaction, an approach
to revealing the presence of a still simulton, i.e. an optical bit in the DFBG-buffer,
is the interrogation of the structure by means of another (similar) slowly travelling
soliton, as sketched in Fig. 5. For an interrogating bit nearly in phase with the
others, still (i.e.: stored bit) and moving solitons will coalesce once again, giving rise
— this time — to an even slower state (because of a larger resulting "mass") which
will eventually leave the drDFBG through the opposite end. The "reading" process
does, therefore, "erase" the optical buffer, the state of which corresponds to the
time of flight of the "inquiry" bit or beam [12]. Notice that this is a manifestation
of the inherent bistability of a nonlinear photonics crystal, because the response
depends on the "history" of the structure.

Quite different is, in the above context, the excitation of stationary simultons
in srDFBGs. The governing equations (with κ = 0), in fact, no longer resemble
those ruling the propagation of quadratic spatial solitary waves. It is convenient
to rewrite (1) including the frequency shift v upon a gap-simulton moving at
velocity V. This gives

with ς = ξ — Vr,Φm (ξ,r) = um,(ξ) exp (imvr) (m = 1, 2), δ 1 = Δ1 — v and
62 = Δ2 — 2v/vg2. For a given detuning δ1, system (3) can be solved for any
62 looking for bright-bright simulton-like solutions moving at velocity V, pro-
vided the condition of existence δ1δ2 < O is fulfilled (notice that, being v typically
small compared to Δ1 , 2i the latter translates into Δ1Δ2 < 0 for system (1)). To
this extent, we can start from perturbative Thirring-like solutions valid for large
2 [1, 9], progressively reducing the latter parameter with a standard continuation

technique. We are able to conclude that, as the phase mismatch (proportional to
62) tends to vanishingly small values, the maximum simulton velocity approaches
zero. The latter result can be restated as follows: bright-bright gap-simultons in
a srDFBG exhibit lower and lower propagation velocities as the SH component
(phase mismatch) becomes larger (smaller). Notice that larger fundamental peak
powers lead to a smaller frequency shift v and to a larger ratio between the simul-
ton intensities at w and 2w, respectively, therefore better approximating the Kerr
phenomenology. Using a split-step algorithm we integrated system (3). Figure 6a, b
displays contour plots obtained at w and 2w versus propagation and time inside a
srDFBG with Δ1 = —0.7 and Δ 2 = 2: the fundamental input is partly reflected
and partly transmitted upon generation of an SH component inside the grating
(ξ >. 0). The two-color simulton, however, reduces its propagation speed with time
(Fig. 7), tending to a stationary state. This result, rather surprising in terms of
intuitive considerations on momentum conservation, can be explained on physical
grounds by looking at the initial stages of the simulton formation, i.e. for T < 400.
A fraction of the generated SH freely propagates away from the input boundary
(ξ = 0); this characterizes the low amplitude SH fields wherever generated by
unbound ω components, i.e. outside the simulton. The corresponding unbound w
components, conversely, resonate with the Bragg grating and are subject to re-
flection within the DFBG, eventually counterpropagating towards the two-color
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Fig. 6. Long range dynamics after the excitation of a slow gap simulton in a singly
resonant semi-infinite grating, from Eqs. (1) with v = 0.5, κ  = 0, Δ 1 = —0.7, and
Δ z = 2; (a) FF, (b) SH.

Fig. 7. Group velocity versus time for the "lazy" soliton graphed in Fig. 6.

gap-soliton. Both these contributions (locally adding or subtracting coherently)
alter the overall momentum associated with the two-color gap-simulton, leading
to the effect pictured in Figs. 6, 7. This small linear wave correction supports this
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physical picture only in the case of low velocity simultons such as those investi-
gated here. This has led to the use of the term "lazy solitons" for such slowed-down
localization states.

In conclusion, gap-solitons, encompassing two (or three, in general) frequency
field components, can be excited in singly and doubly resonant photonic bandgap
structures through multi-color energy localization. Such gap-simultons can be ex-
cited by launching a pulsed beam at the fundamental frequency into a Bragg
grating, and evolve into slowly travelling eigenstates. Stationary states or "still"
simultons can be obtained through inelastic collisions in drDFBGs, and can be ex-
ploited for all-optical memories capable of interrogation through the measurement
of the time-of-flight of similar "bits". Stationary gap-simultons in srDFBGs can
be the outcome of "lazy" solitons, which decelerate in propagation due to local
interaction with linear waves.
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