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The dynamics of solitary waves in second-order nonlinear materials are
discussed using a multiple scales model. After making some comments on
the applicability of other perturbation techniques the multiple scales ap-
proach is developed with a view to setting up a line of approach that, in
principle, permits radiative effects to be modelled. After a closure condi-
tion is applied, equations for the evolution of dynamical variables are de-
veloped. Applications of these equations to loss and interactions are pre-
sented together with confirmation from numerical simulations. It is empha-
sised that the method is capable of extension to higher-order perturbations
and, hence, into the solitary wave fusion region. The established interpreta-
tion of quasi-phase-matching fluctuations as loss is discussed and the simple
problems of soliton (solitary wave) pair interactions in both loss-free and
lossy media are analysed.

PACS numbers: 42.65.—k, 42.65.Tg

1. Introduction
Although the process of second-harmonic generation in quadratically non-

linear media has been understood for a long time, this process has attracted new 
attention in the last few years [1]. The interest is driven partly by a better com-
prehension of how the fundamental wave interacts with the harmonic wave in
materials displaying second-order nonlinearity (x(2) materials). It is also driven by
excellent progress in the material science underpinning this field.

Compared to the third-order Kerr media (displaying x(3) nonlinearity), evo-
lution equations in x(2) media have more degrees of freedom and describe a richer
set of soliton dynamics. For example, in collision problems, fusion of beams is pos-
sible. This and other phenomena open the door to a new range of sophisticated
all-optical devices, such as logic gates, transistors [2] and memory [3].

Most of the theoretical papers published in soliton dynamics rely ultimately
on numerical methods to study the evolution of the beams. Some of papers use
analytical methods, of course but are restricted to very specific cases such as simple
collisions [4]. It is appropriate, therefore, to ask if a general set of equations can be
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set up to discuss the evolution of the as many beam parameters, as desired, such as
amplitude, position, velocity and phase. Can this also be performed for an arbitrary
perturbation? The aim of this paper is to try to answer this question by setting
up such a set of equations for a type I fundamental-harmonic wave generation
mechanism. Analytical formulae are found and these are checked against numerical
solutions for a range of general perturbations like loss, walk-off, interface and
collision problems. Except in few exceptional cases, where violation of a small
field overlap assumption occurs, very good agreement is found between the theory
and the numerical confirmations.

2. Mathematical development

The problem is to find out how solitary wave parameters evolve when the
governing equations are slightly perturbed. The equations are the well-known par-
tial differential equations governing the evolution of the fundamental and the
second harmonic waves in what is known in this field as a type I configuration.
There are two sets of four parameters, for each wave: amplitude, position, velocity
and phase. Also in an asymmetric collision case, it is necessary to deal with four
sets of equations.

Several well-known perturbation methods exist and each possesses their own
advantages. The adiabatic method and the Lagrangian method if the unperturbed
governing equations are integrable — which is not the case here — the perturbed
inverse scattering transform method seem to be desirable. A short presentation of
these techniques for x( 3) materials can be found in Ref. [5], for instance.

It is interesting (and reassuring) to note that these methods lead to the same
set of evolution equations. This is easy to demonstrate for x( 3) materials and it is
true here as well. It can then be asked: what are the merits of a given method? The
real beauty of a particular method lies not only in the analytical formulae but in
its internal structure, which can give insight into the soliton dynamics, if properly
interpreted. For example, if the perturbation method selected is the multiple scales
method [6] it can, in principle, give information on the radiative part of the solution.
This piece of information is not given by the adiabatic method; by definition, no
radiation is possible in this technique.

For a type I interaction the evolution of the ordinary (extraordinary) o(e)
polarised fundamental wave, ω, is related to the e(o) polarised second-harmonic,
v, via a form of the familiar coupled equations that connect the electric fields
associated with those frequencies [7]. The coupled equations will be used in the
following form:

where Eω and E2ω are the Fourier amplitude of the scalar electric fields at the
fundamental angular frequency w and the second-harmonic angular frequency 2w,
respectively, c is the velocity of light in a vacuum, i is the nonlinear coefficient and

εω,ε2ω, are thelineardielectric functions of the material at w and 2w, respectively.
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The choice of propagation direction is z with the 02 /0x2 terms which are to
be interpreted as diffraction terms. At this stage of the development, the second
derivatives 0 2 /8z 2 must be scrutinised carefully because it contains nonpariaxial-
ity. The difficulty surrounding the introduction of nonparaxiality will be resolved
here with the common assumption that Eω, E2ω can be written as a product of
slowly varying amplitudes and rapidly varying phase functions. In addition, the
separation of EW , E2„ into an amplitude, total phase product will be done in one
step that takes out the nonlinear phase from the very beginning. This is not the
common practice in this field, yet it is much more logical than the two-step process
that first separates EW , E2„ into an amplitude and linear phase factor product,
and then introduces an assumption that this amplitude is slowly varying. This
two-step process ignores the possibility that the nonlinear phase, contained in this
definition of amplitude, will lead to a violation of the slowly varying assumption.

In the light of these remarks, Eω, E2ω, will be written as

These equations have an analytical solution only for γ = 1, i.e. B2 = (4e2 ω, —Eω,)/3
which corresponds to a certain level of energy. These solutions are [8]

It is extremely interesting that Eqs. (4) are Galilean invariant because only a
factor 2 occurs in front of i∂/∂z in (4b). Hence, if w, v is a solution pair of (4)

then so is
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These equations represent a soliton moving at an angle tan -1(/ξ) to the z-axis.
Hence, the soliton (solitary wave) centre is, in general, at x = x and (7a), (7b)
can be written as

where, σ <1, is introduced to keep track of the order of the perturbation. Following
Kaup [4)], the general equations (2) can be developed into the singular perturbation
series

where the subscript i represents the order of the perturbation.
It is clear that the zeroth order is just the solution of Eqs. (5) which are for

the unperturbed system. In the absence of perturbations then, the evolution of the
parameters is simply

The introduction of the multiple scales, Tn = σnz permits a spatial or time scale
to be attached to each physical process. For example, from (11) it is already clear
that the position x and the phase a of the beam are changing directly with z
and so have a leading scale To, before any higher order scale is considered. On
the other hand, for the amplitude variation g and the velocity 1;, the first order or 
higher order scales are more appropriate. In other words, the position and phase
possess a fast dependence, whereas the other parameters vary on a slower scale.
In summary of these points, g, ξ, x, a can be written, therefore, as
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The main idea now is, given some perturbation (or value of F), ψ can then be
expanded in eigenstates of L, where the latter are defined through the eigenvalue
equation

Obviously Φ is a column vector and a is an eigenstate. This part of the argument
(15) is quite elementary. Indeed, the bound states have an eigenvalue equal to
zero. Furthermore, these bound states have associated eigenvectors that are a
linear combination of the functions

The eigenvectors (16) can be found by inspection by checking that LΦ, = O and
Lφ0 = 0. Here the subscript e or o denotes an even or odd part of the solution 

and the dot is the usual way to denote the first derivative with respect to θ .
It is interesting that there are also derivative states [6] defined as
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3. Applications of the multiple-scales theory
3.1. Loss or fluctuating phase matching

One of the simplest effects to study is the linear loss introduced by the
crystal. This is rather more interesting than it looks because it turns that fluc-
tuating phase mismatch is entirely equivalent to a loss coefficient [10]. Now since
quasi-phase-matching is needed to get as close to linear phase-matching as possi-
ble in order to keep the power down in potential x(2) devices then loss must be
assessed from this point of view. In this case σ P and σQ take simple forms and

where o is a common factor and o•1, o'2 are the loss coefficients.
To illustrate this degradation mechanism, Fig. 1 shows the evolution of the

normalised amplitude η for a lithium niobate crystal at a wavelength, for the
fundamental, of λω= 1.065 μm. The beam half-width is 15 pm and the loss
coefficients are respectively 35 and 17 dB/m [10]. It is immediately apparent that
the analytical and numerical solutions are in good agreement. It appears from this
that the multiple scales approach is validated, at least for the loss mechanism.
Further examples are needed, however, and these will be discussed below. 
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Fig. 1. Evolution of the normalised amplitude η. Data are given in the text.

3.2. Soliton interactions

Under this heading the old problem of soliton interaction modelled by an
investigation of their overlap region will be set up and analysed. A schematic
representation of the interaction is given in Fig. 2.

Fig. 2. Schematic representation of two interacting beams.
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Assuming the following Gaussian profile for the stationary solutions:

Figure 3a shows a direct numerical simulation of two interacting beams and
their behaviour is plotted on the (x, z) plane in Fig. 3b. As expected, the multiple

Fig. 3(a). Numerical simulation of the evolution of the fundamental beam at
phase-matching. Note the break-up of the multiple scale method after the fusion point.
Units: x =15 µm,z =2.7 mm.
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Fig. 3(b). Evolution of the beam centres for the above case.

Fig. 4. Relation between the collision length Lc and the phase-matching coefficient -y.
The units for the 3D inserts are x = 15 µm, z =2.7 mm.
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scales approach fails to give a description in the fusion region where the overlap
between the two solitons is no longer small. Here higher order perturbations cannot
therefore be neglected and radiative effects become important.

Figure 4 shows the relation between the collision length L c and the phase
matching coefficient γ. Again, good agreement between the two approaches is
found for a large range of values γ. Note that for a high value of y, the collision
length L, reaches a saturation value. It is interesting that this value corresponds
to the collision length for two x( 3) (or Kerr) solitons.

Fig. 5. Evolution, at phase-matching, of the beam centres when the initial phase dif-
ference is 7r. The other parameters are given in the text. Units: x 15 µm, z = 2.7 mm.

Figure 5 shows a case where the two solitons have an initial phase difference
of 7r. Initial attraction is due to the small initial velocity ξ 1,2 = 0.3. Here the
overlap between the solitons stays relatively small compared to the width of the
solitons themselves and therefore good agreement is found for all values of z.

3.3. Soliton interaction in lossy media

One of the advantages of the approach given in this paper is the ability to
deal with arbitrary small perturbations. It is then possible to mix two or more
effects — providing that the perturbation term stays small. For example, in the
case of interaction in lossy media, the perturbation of the first soliton is

Figure 6 shows the evolution of the beam centres (analytical) for both lossless
and lossy media. The seemingly peculiar fact that the loss reduces the collision
length can be qualitatively explained by the broadening of the beams (due to the
loss) and therefore the bigger overlap. The bigger overlap is responsible, in turn,
for an earlier stronger attraction force between the two solitons.
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Fig. 6. Evolution, at phase-matching, of the beam centres in the case of ideal and lossy
media. Trajectories are obtained analytically. Units: x =15 µm, z = 2.7 mm.

Fig. 7. Evolution of ΔLc (see definition in the text) with the phase-matching coeffi-
cient -y.

The multiple scales approach can be used to investigate the evolution of
ΔLc = [Lc (loss) — L c (ideal)]/Lc (ideal) (in %) with the phąse matching coeffi-

cient y. As seen in Fig. 7, this difference can be quite important for small γ, for
high second-harmonic content in the wave structure.
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