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Positron affinities and deformation potentials are calculated in cubic
bulk semiconductors using the density functional theory with the electron
and positron energies in the local density approximation and generalized
gradient approximation, respectively. In order to estimate these quantities,
two different forms of the electron-positron correlation potential are used.
Positron affinities calculated using these two correlation potentials differ by
about 0.3 eV. Our calculated affinities in 3C-SiC are in better agreement
with experiments than those obtained previously by another first principles
method. In the present work the positron affinity in BN is found to be quite
close to the one in diamond.
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1. Introduction

In the complete many-body theory of Lang and Kohn the electron work
function (4_), which is the energy required for an electron to escape from the
interior of the solid into vacuum, is separated into the bulk electron chemical
potential (u_) and the surface dipole potential (A) arising from the spilling out
of the electrons beyond surface planes [1]. The work function is thus expressed
as ¢_ = —pu_ + A. The electron cannot escape from the solid as it is electrically
repelled back by the surface dipole potential. Since the positron is attracted by
the surface dipole potential, the positron work function is expressed as ¢4 =
—py — A. Measurements of the electron and positron work functions need clean
sample surface as the dipole potential can be altered by absorbants. Puska et al.
have defined the sum of electron and positron chemical potentials as the positron
affinity (A4) [2] which is the relevant quantity in the comparison of the absolute
positron energy levels in different materials. The positron affinity is related to the
electron and positron work functions as

Ay = —(¢- +¢4) = p- + py. , (1)
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From this equation it is clear that the positron affinity is the bulk property
of a homogeneous material. It is important in understanding the positron trap-
ping at interfaces and precipitates. The positron affinity can be obtained from the

" positronium work function measurement [3]. However, the method is technically
difficult and its precision not yet good enough to allow a reasonable comparison
" between theory and experiment. On the other hand, A+ of a material can be found
from separate measurements of the electron and positron work functions provided
the surface energy contributions are identical in both measurements [4]. However,
the latter condition is very hard to achieve and A, estimated in this way has
‘got large scatter. The positron affinity can be measured in the positron emission
spectroscopy method [5, 6]. Weiss et al. have proposed that Ay can be measured
from the kinetic edge of the positron induced secondary electron emission [7]. Since
this experiment does not require the explicit emission of positrons from the sam-
ple, it can be used to measure A, even in samples having positive p051tron work
function. :
The free positron diffusion in a semiconductor at low temperature is domi-
nated by interaction with acoustic phonons. The contribution of positron acoustic
phonon scattering is usually calculated using the Bardeen—Shockley formula which
requires a precise value of the positron deformation potential [8]. The positron de-
formation potential F4 is obtained from the volume derivative of the positron

affinity
_ o044
Ba= 2%

where §2 is the volume of the crystal.

The estimation of the electron (positron) chemical potentials needs the elec-
tron (positron) ground state energies to be evaluated using a suitable common
reference potential referred to the vacuum. In the Korringa—Kohn—-Rostoker and
augmented plane wave methods the common potential is calculated as the mean
between the muffin-tin radius and Wigner-Seitz radius [9]. In the linear muffin-tin
orbital within atomic spheres approximation (LMTO-ASA) method the Coulomb
potential vanishes on the surface of the Wigner—Seitz cell. This allows the reference
potential to be chosen uniquely at the surface of the Wigner-Seitz radius [2]. In
the present work we have adopted the pseudopotential method where the average .
of the Coulomb potential is usually chosen as the reference potential [10].

2. Theory

The electron and positron states are calculated using the two-component
density functional theory [11]. We adopted the simplified two-component density
functional theory for the delocalised positron where there is only one positron
in a many electrons system. In this scheme the evaluation of the electron states
is independent of the positron density. The electron states are calculated in the
pseudopotential method with the potential given by

V_(r) = Vps(r) + €2 / el (’") d3r'+ch(r), (3)

where Vps, n(r) and Vxc(r) are the pseudopotential of the ion, the valence pseudo-
-charge density and the exchange-correlation potential respectively. The second

(2)
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term in Eq. (3) is the repulsive Hartree pot;entlal The pseudopotentlal Vos(r) is
given by the relation

Vsl = YU Vi(r-R=m) (1), @
iR
where R is the lattice position and 7; is the position of the ion of i-th type. The
summation over 7 is carried out on all types of ions in the semiconductor. In our
calculation we have employed the semi-local pseudopotential of the form [12]

1,2
Vii(r) = == ert(/odr) + (af + bjr?)eeir, (5)
where Z}; is the valence charge of the i-th atom. The parameters a¢, a;, b; and o
are fitted to reproduce eigenvalues and wave functions of the all-electron methods.
The exchange-correlation potential in Eq. (3) is obtained from the functional form
of the exchange-correlation energy (Exc[n]) as ch(r) = 8Exc[n]/6n(r) where
Exc[n] in the local density approximation (LDA) is given by

Excln] = / n(r)excln(r)]der. 6

In order to obtain results consistent with the all-electron methods we have incorpo-
rated the nonlinear core correction (NLCC) technique [13] where Vxc is evaluated
with the total pseudo-charge density ng(r) consisting of the pseudo-valence and
pseudo-core charge densities.

In this work the Bachelet—-Hamann-Schliiter pseudopotentials are used for
all group IV and III-V semiconductors [14]. For the group II-VI semiconductors
we have used the pseudopotentials of Dal Corso et al. [12]. The parametrized form
of the exchange-correlation potential by Perdew and Zunger [15] is used in the
present work. The chemical potential is calculated as

b = Ey+a+ Vo, o NG
where E,, a, and V; are the top of the valence band, the pseudo-core correction and

the average of the Coulomb potential, respectively. Using Eq. (5) the pseudo-core
correction 1s derived as

e2

=1 / [Z ve? _ Zve Y ext(er) | d°r = 27’920: . ()

The total positron potential contalns the repulsive ion-core potential, the attractive
Hartree potential and the electron—positron correlation potential. The ion-core-
potential is calculated in the point-core approximation. The correlation potential
is evaluated in the generalized gradient approximation (GGA) where the potential
depends on both the electron density and its gradient [16]. In order to reproduce
results of the all electron potential method we have taken the NLCC in this case

152
V=3 o [ 2L o 4 VS alr), Ta(r) )

'—Tzl

Comparing Eq. (9) with Eq. (8) we find that the positron Hartree potential is
the same in magnitude as the electron Hartree potential, but opposite in sign due
to its charge. We have used the semi-empirical form of the correlation potential
introduced by Barbiellini et al. [16]

Vi [no(r), Vno(r)] = VanAlno(r)le=#</2, - (10
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where VLDA is the correlation potential in LDA and € is proportional to
|[Vno|?/nE. Here, B is a parameter adjusted to the value of 0.22.
The positron ground state energy is obtained as

m= [u0) - e )] o (11)

where V.. is the positron wave function. The positron chemical potential, calculated
with respect to the average of the Coulomb potential, is given by

y+ = Eo - V[). (12)
We find that the calculation of the y_ and p using Egs. (6) and (11) respectively, .
requires Vj referred to the vacuum. In the pseudopotential method V; is calculated
from the volume average of the Coulomb potential. Unfortunately, V, calculated
in this manner is not unique and not referred to the vacuum [17]. However, using
Egs. (7) and (12) in Eq. (1) we find that the positron affinity does not require the
explicit determination of Vg ‘

A =E,+ Ey+a. (13)
Unfortunately, up to now experimentally determined affinities do not exist for
all semiconductors to check the accuracy of our calculations. However, measured
positron lifetimes are available for most of the semiconductors and we can compare
our calculations with them. The positron lifetime in the positron GGA scheme is
given by the relation

A= = e [ mo(rIns (rhraalno(r), Vio(r)ld®r (14)
The enhancement factor within the GGA formalism [16] is given as
vaGa[no(r), Vno(r)] = 1 + {yLpalno(r)] — 1} exp(—pe). (15)

The significance of this semiempirical formula is that the enhancement factor
approaches to that within the LDA formalism for the valence electrons (¢ a 0)-
and becomes unity for the rapidly varying core electrons (e & o).

3. Results and discussion

In the previous section it has been observed that the accuracy of the cal-
culated positron affinities depends on the exact method of deriving electron and
positron correlation energies. The correlation energies described in the LDA for-
malism are known to overbind atoms in a solid. It is assumed that this does not
create any significant error in the present calculations as the experimental lattice
constants were used for all semiconductors. The Perdew—Zunger parametrized form
of the electron correlation potential is based on the quantum Monte Carlo (QMC)
method and therefore it is widely accepted. However, there is no such parametrized
form of the electron—positron correlation energy based on the QMC method. Here,
the Boronski-Nieminen [11] and the recently proposed Bororiski-Stachowiak [18]
forms of the correlation energies have been used to compare positron afﬁmtles
deformation potentials and lifetimes — this is presented in Table.

It is found that lifetimes calculated using two different correlation energies
are nearly the same, but affinities differ approximately by 0.3 eV in all semiconduc-

~tors. On the other hand, for samples with larger lattice constants, the deformation.
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TABLE

Positron affinity A4, positron deformation potential Eq and
lifetime 7 calculated in the parametrized forms of the
Boronski-Stachowiak (BS) and Boronski-Nieminen (BN) cor-
relation energies in the local density approximation for differ-
entsemiconductors. Experimental values of 7 [16, 21] are given

for comparison.

BS BN Expt.
Ay Eq4 r | Ay Ey T T
[eV] | [eV] |[ps] | [eV] | [eV] |[ps]| I[ps]
Diam | -2.67 | -11.48 | 101 | -2.30 | -11.79 | 101 | 100
Si -6.24 | —6.44|216 |-5.98| —6.51|216 | 216
Ge -7.72 | -4.22|228 | -7.47| —4.29 | 228 228
SiC -4.43 | -8.42 | 145 | -4.10 | -8.60 | 145 141
BN ~-3.78 { -10.33 | 109 | -3.37 { -10.60 | 109
GaAs | -7.90 | -4.71 (225 |-7.64 | -4.78 (225 | 231
GaP |-7.95| -4.911219 |-7.69| —4.98 219 | 221
CdTe | -7.65 | —3.40 {270 |-7.37| -3.14}270 [ 285

potentials are nearly the same in two correlation energies, but at those with smaller
lattice constants the deformation potentials differ approximately by 0.3 eV. The
calculated lifetimes are in good agreement with experiment for samples with low
electron densities whereas for samples with high electron densities the agreement
is poor. This is due to the fact that core electrons are not considered while con-
structing the positron ion-core potential.

The calculated positron affinity and deformation potential in diamond are
found to be close to —2.5 eV, a value given by another theoretical calculation [11].
Similarly, the calculated deformation potential is found to be slightly smaller than
the earlier value of —12.3 eV obtained by the same method with a different crystal
zero scheme [19]. :

In Si the affinity is smaller than —6.95 eV reported earlier by the LMTO-ASA
method [2] whereas the deformation potential is closer to that calculation.

The positron affinity in Ge is found to have a higher value with the defor-
mation potential being smaller than 2 eV compared to LMTO-ASA results [11].
The cause for this discrepancy might be that the present method of calculation is
based on the GGA scheme.

In 3C-SiC the positron affinity is measured as —3.83 & 0.45 eV whereas an
LMTO-ASA calculation with positron energies based on the GGA scheme esti-
mates it to be —5.61 eV [20]. From Table I we find that the present calculation
based on the Boronski-Nieminen formula for the correlation energy is in good
agreement with the experiment.

Compared to other semiconductors we find that the positron affinity and
deformation potential values of BN are quite similar to diamond. This shows that
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BN might be another candidate for the production of a field assisted moderator.
To our knowledge there are no theoretical and experimental results available
in other semiconductors for comparison.

4. Conclusions

This is the first report of positron affinities and deformation potentials in
-compound semiconductors.

The electron exchange-correlation potential in the LDA method has been
used to calculate these quantities. Further improvements are in progress to cal-
culate the electron exchange-correlation potential in the GGA scheme which is
supposed to reproduce structural properties of semiconductors. In addition, the
frozen-core corrections for the top of the valence band will be taken into account
to calculate positron affinities and deformation potentials. _

One of us (B.K.P.) acknowledges the Alexander von Humboldt foundation
for awarding a post-doctoral fellowship to work in Germany.
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