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The advent of synchrotron sources has led to an increasing availability
of high resolution Compton profiles J(pz ) and a consequent renewed interest
in the reconstruction of the corresponding full momentum densities p(p). We
present results of applying a new method in which the radial parts of p(p)
and the measured profiles are expressed in terms of the Jacobi polynomials.
The technique is demonstrated using model projections that correspond to
Mg and Gd spectra. Reconstructed densities, being in very good agreement
with model ones, are a very good performance of our new reconstruction
algorithm.

PACS numbers: 71.20.—b, 78.70.Bj

1. Introduction

Electronic densities in the momentum space, p(p), can be experimentally
determined by measuring Compton profiles (CP) or angular correlation of positron
annihilation radiation (ACPAR) spectra. In the case of CP or one-dimensional
ACPAR measurements one obtains plane projections of p(p):

The knowledge of J(px ) for various orientations of p,z allows to reproduce p(p)
from measured profiles. Up to now four various algorithms have been known:
Mijnarends [1] and Fourier transform [2] methods, orthogonal polynomial ex-
pansion [3] and application of maximum entropy [4]. So far, only two first algo-
rithms [1, 2] have been applied to the experimental data. In this paper we present
the results of usage of a new technique that is proposed in the paper [5] and shortly
described below.

Both quantities p(p) and J(p,z ) are expanded into lattice harmonics Flv(Θ, φ):
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where Ft, form an orthogonal set of linear combinations of spherical harmonics
Ylm of the order 1. Index v distinguishes the harmonics of the same order and
(Q, a) describe the polar and azimuthal angles of the pz -axis with respect to the
reciprocal lattice system. In order to make our formulae clearer, the index v will
be omitted, keeping in mind that for some 1 a few lattice harmonics of the same
order have to be included. If radial parts of measured spectra are given as series
of Jacobi nolvnomials

then the radial parts of a density are described by the following expression:

This new algorithm has some advantages in comparison with other reconstruction
techniques. First of all, the expansion of measured spectra into orthogonal poly-
nomials has least-squares approximation properties and hence properly takes into
account experimental errors — for more details see [5].

We have performed tests of this method for two different models of p(p) that
simulate electron–positron densities in Mg and Gd.

2. Reconstruction from plane projections

Our model projections have been calculated for two models of p(p) with
hexagonal symmetry. Having 2D ACPAR data (line projections) for Mg [6] and
Gd [7], we reconstructed p(p) applying the Cormack method [8]. This way we
had densities which were real, contained experimental errors and were smeared
by the finite resolution function of the equipment (about 0.1 a.u. (atomic units),
i.e. comparable with Compton profiles obtained using synchrotron sources). For
these densities, treated as model ones, plane projections J(pz ) were calculated for
various orientations of pz .

The first model of p(p), resembling electron–positron densities in Mg, is
described by p(p) = p0(p, Θ) + p6(p, Θ) cos(6φ). It is equivalent to description
of p(p) by two density components (p0(p) and p6(p)) which have various values
on succeeding planes perpendicular to the [0001] direction. As in case of simple
metals, p(p) has high values for p < pF , where pF denotes the Fermi momentum
in the extended zone scheme, and very small outside the Fermi surface (FS). Our
model FS is almost isotropic having very small distortions from sphericity being
the highest around the ALH plane (reduction of holes and electrons around the
symmetry point H and L, respectively). There is also a small contribution of the
Umklapp components (in the PM direction) which has the highest values on the
first basal ΓMK plane.

For this model p(p) was reconstructed from two sets (7 and 9) plane projec-
tions with pz along: (1) 3 main (PM, PK, A) and four intermediate directions
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and (2) 9 intermediate ones. Application of. 9 projections (/3 = 7.5°, 22.5°, 37.5°
and a = 15°, a = 52.5°, 67.5°, 82.5° and α = 7.5° and 22.5°) with the change of
a and Q equal to 15° (instead of 30° as for 7 projections) gives much better results.
First of all some anisotropy of the FS on the ΓMK plane, obtained for 7 projec-
tions, disappeared. p(p) reconstructed from 9 projections, compared with model
densities on the ΓMK and ALH planes, is displayed in Fig. la. The anisotropic
part of p(p), equal to p6 (p, Θ) cos(6φ) (model) and E pi(p)P16 (θ)cs cos(6φ) with

Fig. 1. Densities for Mg reconstructed from 9 plane projections (right part of the figure)
compared with model densities (left part). Densities on the Γ MK and ALH planes are
presented on the lower and upper part of the figure, respectively. Parts (a) and (b) show
total densities ρ(p) and their anisotropic components, respectively.

Fig. 2. Plane projections J(pz ) for three various orientations of pz described by (β, α):
(0°, 0°) — dashed line; (30°, 30°) — dots and (60°, 15°) — solid line.
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Fig. 3. The same as in Fig. 1 but for Gd after using 15 plane projections and on the
planes FMK (lower part) and Γ¹M¹K¹ (upper part).

l = 6, 8, 10 (reconstructed densities) is presented in Fig. lb. P/6 (θ)4 cos(6φ) de-
notes those lattice harmonics which distinguish various directions on the chosen
hexagonal plane. Some small differences between the model and reconstructed
densities, observed for small momenta, are connected with the fact that inaccura-
cies in the reproduction of p(p) for higher momenta are accumulated for smaller
momenta.

The second model, described by p(p) = p0 (p, Θ) + p6(p, Θ) cos(6φ) +
p12(p, Θ) cos(12φ), simulates electron–positron densities in Gd, where the aniso-
tropy is much higher than in Mg and densities are typical of transition metals.
Here we calculated 15 projections J(p z ) with p z along three main and twelve in-
termediate projections (Fig. 2), changing Q and a by 15°. In this case our model
densities were reproduced in details — see Fig. 3. Here the anisotropic part of re-
constructed densities is described by Σ  pl(p)Pm(θ)cm cos(mφ) with (1,m) = (6, 6),
(8,6), (10,6), (12,6), (14,6), (12,12), (14,12). For this model we show results on the
FMK and Γ¹M¹K¹ planes where ΓΓ¹  = 2ΓA. On the contrary to the first model,
where p(p) has similar values in r and r1, here the densities in the point r1 are
about 2.2 times lower than in r (although there are 3 valence electrons/atom in
Gd while in Mg only 2). It is connected with the fact that for Mg valence electrons
are almost free and in Gd (transition metal) they have s+ d character and there
is the contribution of two hole Fermi surfaces in the r1 point in the extended
zone scheme. It should be noticed here that contrary to the Compton profiles, our
spectra (Fig. 2) represent plane integrals of p(p) (with the statistic 7 x 10 6 counts
at peak) with the most contribution of valence states.

Our tests clearly show that this new reconstruction technique [5] works very
well. Of course, in order to check if this method is the most efficient indeed,
we intend to apply other techniques [1-3] to the same model projections in the
future work.
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