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Interdependences between plane projections of densities p(p) for var-
ious crystallographical structures are derived from the conditions of both
the consistency and symmetry of projections. Some additional relations are
obtained by treating plane projections as line projections of pL(p) (pL is a
line projection of p(p)) and using the consistency and symmetry conditions
for the line projections. The relations found can be utilized for both an im-
provement of experimental spectra and a verification of various techniques
used for e.g. correcting Compton profiles.

PACS numbers: 71.20.—b, 78.70.Bj

1. Introduction

All experimental spectra, being projections of the same function p(p), must
be interdependent. This dependence can be derived from both the consistency and
symmetry conditions, presented by us for line projections in the paper [1]. Here
we discuss this question for plane projections, as measured e.g. in the Compton
scattering experiment

where Fi„ form an orthogonal set of linear combinations of spherical harmonics
Yim of the order 1. Index v distinguishes harmonics of the same order and (β,α)
describe the azimuthal and the polar angles of the p z -axis with respect to the
reciprocal lattice system and p = | pz

Equation (1) can be solved analytically if the radial functions gi,, are ex-
panded into Hermite [21 or Jacobi [31 polynomials



which is equivalent to the fact that the lowest polynomial in p i, is of the order 1.
This property allows to estimate some dependences between J(pz ) given in this
paper.

2. Consistency and symmetry conditions
The consistency condition (CC) for J(pz) is always satisfied if the measured

spectra are complete (for more details see [1]) which is usually true in the Compton
profiles (CP) experiment. This condition is automatically imposed on the data via
the reconstruction of p(p) but it could be also utilized for checking if our data
were measured and corrected properly.

In order to check if spectra are proper the following procedure is proposed:
1. Functions glv (p) are evaluated from Eq. (2).

2. Each of glv (p) is expanded into a series of any even orthogonal polynomials
Σm=0alm w2m (1))*

3. We check if the first 1/2 coefficients ar are close to zero in comparison with
the first 1/2 coefficients aó (see discussion in Sec. 3). If not, there is some
inconsistent error in the data which is bigger than the statistical noise and
our data should be proved once more. If this ratio is small, we can correct

J(pz) putting l/2 first am equal to zero and using Eq. (2) with the consistent
functions g74) which fulfil the CC following from Eqs. (3) or (4).

However, sometimes we are not able to calculate glv(p) — if e.g. for the hcp struc-
ture we have only three J(pz) with p, along the PM, PK and PA symmetry
directions. In this case (Q, a) are equal to: (π/2, π/6), (π/2, 0) and (0,0), respec-
tively, while the first three lattice harmonics are independent of a (have the same
values for the PM and PK directions). Therefore, here we propose to use quite dif-
ferent analysis, treating plane projections of p(p) as line projections of pL (defined
below) and using the consistency and symmetry conditions for line projections [1].

Choosing p along an axis of the crystal rotation of the order |G|, all spectra J(p z )
(with p,z changed on the plane perpendicular to this fixed p axis) can be expanded
into the following series:

*This has an additional advantage — having the least-squares approximation properties, we
take properly experimental errors into account. In such a case when we do not perform recon-
struction, we propose to use Chebyshev polynomials for the reasons described in the paper [1].



All conditions drawn here for the hcp structure are satisfied tor both cubic
and tetragonal structures by replacing |G| = 6 into |G| = 4. However, for the cubic
structures, where three axis of the fourth order exist, one can get some additional
rules. Because here directions ΓA (β = 0, α = 0) and ΓK (β = π/2, α = 0) are
equivalent, we obtain that ci is the same for all projections with Pz lying on the
main crystallographical planes (independently if they are of the second or fourth
order). Some of these results can be derived from Eq. (2) because for the cubic
structures all lattice harmonics (except of F0 = 1) depend on (β, α ). Taking the
directions [100], [110] and [111] as an example we obtain the following relations
for ci: 	

35ci([100])- 8ci([110]) - 27ci([111]) = O 	for	 i = 0,1,

ci([100]) - 4ci([110])+3ci([111]) 	 O 	for	 i = 0,1, 2.

c i satisfies both equations when c1([100]) = c1([110]) = c 1 ([111]) which is in
agreement with the previous result.
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3. Applications

Relations 1° and 2° for the line projections have been proved for various
strongly anisotropic models [l]. Next, having experimental projections for four
metals of the hcp structure [4] with pz (plane projections) or px (line projections)
changed on the hcp plane, we checked that the conditions 1° and 2° are satisfied
with the accuracy of the order 0.5% up to 1.5% and 2% up to 5%, respectively,
depending on values of cm (φ). Three first cm (φ) have the highest values, so here
is the lowest influence of the statistical noise and they are best determined.

In order to prove how these conditions will characterize an improper shape
of J(pz ), the following situation has been simulated. Let us assume that for some
reasons one projection is given incorrectly, e.g. it is measured for somewhat another
distance between experimental points but we do not know about it. As a result, it
is measured up to momentum Amax equal to 2.1 [a.u.] (in atomic units) instead of
2 [a.u.] (above 4 [a.u.] our model density is equal to zero). Taking the same Amax
for all spectra and normalizing them to the same area, we observe a very strong
reaction of cm (φ) in the case of model shown in Fig. 1 of the paper [1]. Because this
model is much more strongly anisotropic than real electronic densities, the same
test was performed for projections presented here in Fig. 1. For this model the
changes in cm (φ) were lower but still much higher than for experimental data where
their inconsistency was due only to the statistical noise. Namely, inconsistency of
cm (φ) for the incorrect model projection was of the order: 2% for c l (cp), 5% for
c2 (φ) (condition 1°) and from 10% up to 40% for c3(φ) and c4 (φ), respectively
(condition 2°).

Fig. 1. Model projections J(pz) for the hcp structure with pz along Γ K (circle) and
the Γ M (square) without an isotropic core contribution (units 2 [a.u.] Ξ1).
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4. Conclusions

The interdependences between the plane projections of p(p), found in Sec. 2,
can be utilized for both improvement of the CP (or one-dimensional angular cor-
relation of positron annihilation radiation spectra) and a verification of various
techniques used for correcting these experimental data. It could be important par-
ticularly for the CP where the way of correcting J(pz ) is not univocal and can be
individual for each the spectrum J(p2 ) [5].
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