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The problem of a role of boundary conditions in a diffusion model of
positron reemission is discussed. It was shown that a sink rate cannot change
from zero up to infinity but has an upper limit equal to a half of a mean
positron velocity. Some additional relations connected with this result are
presented as well.
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1. Introduction

In the problem of positron reemission (and/or positron surface trapping)
treated as being controlled by positron diffusion the following simple positron fate
equation for the interior of a sample (say a. reemitter) is often used:

The first term in the right part of Eq. (1), S(x, y, z, t), describes the implanta-
tion of positrons (implantation profile), the second one — the diffusion determined
changes of positron concentration (c(x, y, z, t)) and two last terms — the annihi-
lation and trapping processes respectively. D is a positron diffusion constant, λ —
a positron annihilation rate and κ— a positron trapping rate.

As a rule the situation is considered as in Fig. 1. Positrons injected into
the sample-reemitter are slowing down in it and, after the thermalization, move
diffusively. Some of them end their diffusive movement annihilating in the sample,
as free or previously trapped, which is shown as a case α. Others reach a sample
boundary being then reemitted (case b) or surfacely trapped. Some of positrons
reaching the boundary can be reflected and thus they may continue the diffusive
movement (case c) etc.
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Fig. 1. Simplified presentation of the positron-reemission problem; positrons are in-
jected into the sample through a flat boundary perpendicular to a certain χ-axis.

Additionally, the assumption is taken that the geometry and positron source
characteristics do not depend on time, and thus Eq. (1) can be replaced by the
following one-dimensional equation for an equilibrium positron concentration c(x):

is commonly used. In Eq. (7) α having a dimension of velocity is called a sink rate
and depends on boundary characteristics. It is also assumed that a can change from
zero for a perfectly reflecting boundary to infinity for a boundary being perfectly
transparent (and/or absorbing) for positrons (see e.g. Britton [1] and references
therein). It should be mentioned that for α = +∞ Eq. (7) needs the equilibrium
positron concentration c(x 0 ) equal to zero.
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In this paper we would like to pay one's attention that the assumption of a
being infinite is unphysical one.

2. Sink rate for completely transparent boundary
Let us start with considering the sample for which c(x) = const. If we take

into account the flat surface x = const then diffusing positrons are going through
it with equal current densities in both directions. As it is shown in the neutron
physics analysis (see. e.g. Beckurts and Wirtz [2]) these densities, say J+ for vx > 0,
i.e. for positrons going through the surface in x-axis direction and J- (for vx < 0)
are equal to

vx+ denotes the mean value of x-components of positron velocities, for positrons
having vx > 0 and v is a mean value of velocities of diffusing positrons.

Let us now suppose that for some x value dc(x)/dx # 0, say it is negative.
Then we should expect that J+ increases and J_ decreases as compared to those
given by Eq. (8), namely we should have

where D is the diffusion constant. Because the resulting diffusion current density
J is the difference of J+ and J_ one can easy prove that Eqs. (10) and (11) are
the components to the Fick law, namely we have

Let us now assume that we have a flat boundary, completely transparent for
positrons, at x = x0 (say as in Fig. 1), the sample being for x < x0 and the vacuum
for x > x0. Thus at x = x0 we should have no positron current in the direction
opposite to the x-axis direction (J_ = 0) and thus resulting current should be
equal to J+ given by Eq. (10) with x = x0. On the other hand, this current should
correspond to the Fick law, and thus we should have

It means that the sink rate has an upper limit α max equal to a half of the
mean value of the velocities of the diffusing positrons i.e.
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3. Sink rate for reflecting boundary

Let us now consider the boundary (at x = x0) partially reflecting positrons
which reach it, say with a probability equal to pr =1—p0; thus p0 is the probability
that a positron impinging the boundary does not return to the sample interior (it is
removed out of the sample interior). Thus at x = x 0 , J+ is determined by Eq. (10)
whereas for J_ we have

Taking into account the Fick law (12) one can easily obtain that

It means that the positron sink rate a is connected with the probability p0 by the
formula

which gives a = O for p0 = O and a = v/2 for po = 1 (in agreement witl
formula (15)).

If there are some possibilities of sinking for positrons reaching the boundary
say a reemission, surface trapping, and positronium formation, then p0 should be
treated as the sum

of the respective partial probabilities. In the literature the sink rate a is often
presented as the sum of some αi ascribed to different sinking processes, say in the
form (see e.g. [3, 4])

It should be however mentioned that a change of the possibility of one of the
sink processes changes not only a "sink rate" ai formally ascribed to this process
but affects the other of them as well. It is not so in the case of probabilities pi in
Eq. (19). Thus p0 and its components are more suitable for interpretation than
the respective a values.

4. Probability of positron reemission

By solving the positron fate Eq. (3) with S(x) (implantation profile) being
different from zero only near the distance z from the boundary and using the
boundary condition (7) with the assumption that the only sink process is the re-
emission, one can easy obtain the known formula (see e.g. [1]) for the probability of
the reemission of a positron being implanted at the distance z from the boundary,
namely
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Taking in ,(21)a equal to infinity we obtain

which is interpreted as the probability of the positron reemission for the case of the
perfectly transparent (not reflecting) reemitter boundary. By taking into account
that a has the upper limit, given by formula (15), we should replace (22) with
formula

The differences between values εmax(z) resulting from (22) and (23) are not
very significant ones. For example if we take D = 10- 4 m2 s-1 , L = 10 -7 m
and v = 10 5 m s-1 (approximately the mean value of the thermalized positron
velocities at room temperature) the preexponential term in (23) appears to be
close to 1. namely

This term can be as well treated as the upper limit of a positron reemission
probability related to a positron implanted just near the reemitter boundary. Why
is it thus different from 1? For a positron implanted near the perfectly transparent
reemitter boundary there are equal to 1/2 both the probability of impinging the
boundary and escaping from the reemitter, and the probability of starting to move
with such velocity direction as if it was reflected from the boundary. In the last
case the positron will be some time in a diffusive movement which can be stopped,
say with a probability 1 — y, by its annihilation in the reemitter interior or, with
a probability equal to y, by its reaching the boundary and escaping from the
reemitter Thus we h ave a. relation

which gives us the probability that the positron reflected from the boundary reaches
it once more. For the parameter values used in (24) we obtain y 0.96. It means
that for typical sample conditions the positron reflected from the boundary has a
relatively high probability to return to it once more.

Let us now return to the situation when the positron impinging the boundary
can escape (sink) with the probability p 0 . The formula (23) gives us the proba-
bility that positron implanted at the distance z from the boundary impinges it at
least once. According to this the common probability of the reemission, for such
positron, can be written as the sum
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This formula, being equivalent to Eq. (21) with a given by (18) has the form more
suitable to physical interpretation than Eq. (21). Here the probability of reaching
the boundary by the positron implanted at the distance z from it (Erna. (z)) and
the probability that the positron reflected from the boundary returns to it (y) do
not depend on the boundary conditions. These last ones are represented in formula .

(27) by the parameter p0 .

5. Final remarks

The fact, pointed out in the paper, that a sink rate has an upper limit,
changes some existing views related to the diffusion model of a positron reemission.
We limit us here to one example. Britton [1] has written that for a perfectly
transparent boundary, that is for α = ∞, the reemission current is determined by
the gradient of the positron concentration only. In fact, as it is seen from (13) this
gradient can give only a half of the reemission intensity needed by the Fick law.
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