Proceedings of the 30th Polish Seminar on Positron Annihilation, Jarnołtówek 1998

ORTHO-POSITRONIUM LIFETIME AS A DETECTOR OF SPIN-CROSSOVER

M. BOKOR^a, T. MAREK^a, K. SÜVEGH^a, Z.S. BÖCSKEI^b, J. BUSCHMANN^c AND A. VÉRTES^a

^aDepartment of Nuclear Chemistry, Eötvös Loránd University P.O. Box 32, 1518 Budapest, Hungary ^bChinoin Inc., Budapest, Hungary ^cInstitute für Kristallographie, Freie Universität, Berlin, Germany

Positron lifetime parameters were measured for the spin-crossover complexes $[Fe(R-1H-tetrazole)_6](BF_4)_2$ (R = 1-ethyl, 1-n-propyl) and for the diamagnetic $[Zn(1-n-propyl-1H-tetrazole)_6](BF_4)_2$. Positronium forms with significant intensity in the studied compounds. The ortho-para conversion of ortho-positronium was used to follow the spin-crossover. Changes of the dynamic structure were found in the propyltetrazole complex between 150 K and 90 K.

PACS numbers: 78.70.Bj, 36.10.Dr, 75.20.-g, 33.25.+k

1. Introduction

ortho-Positronium (o-Ps) lifetime spectra can signal the spin-crossovers of transition metal ions in liquid [1] and solid phases [2]. The lifetime of o-Ps is shorter in the presence of unpaired electrons (high-spin state), due to the ortho-para conversion initiated by the paramagnetic spin-spin relaxation, and it is longer in the case of paired 3d electrons (low-spin state), because of the lack of ortho-para conversion. The studied [Fe(1-alkyl-1H-tetrazole)_6](BF_4)_2 compounds are octahedrally coordinated spin-crossover complexes of iron(II) — they undergo a temperature induced high-spin (HS) \leftrightarrow low-spin (LS) transition

$$t_{2g}^4 e_g^2 \stackrel{\text{cooling}}{\underset{\text{heating}}{\longleftarrow}} t_{2g}^6, \qquad {}^3T_{2g} \stackrel{\text{cooling}}{\underset{\text{heating}}{\longleftarrow}} {}^1A_{1g}, \qquad \Delta S = 2.$$

The complexes are arranged into electrically neutral layers. There is a cleavage plane parallel to these planes and a pseudotrigonal symmetry axis perpendicular to each layer. In the ethyltetrazole complex (Fe-etz) only 2/3 of the central Fe(II) ions undergo spin-crossover $(T_{1/2} = 105 \text{ K})^*$, while the other 1/3 remain in the HS state even at the lowest temperatures [3] while in the propyltetrazole complex (Fe-ptz) the spin-crossover $(T_{1/2}^{\dagger} = 135 \text{ K} \text{ and } T_{1/2}^{\dagger} = 128 \text{ K}$, accompanied by a

^{*}At $T_{1/2}$, the HS state fraction of ions undergoing the spin-crossover is equal to 0.5.

crystallographic phase transition at 130 K) is practically complete [4]. The phase transition influences only the relative position of the complex layers. The partial spin-crossover of Fe-etz is traced back to the two inequivalent lattice sites in 2:1 proportion; the Fe(II) sites of Fe-ptz are equivalent [3]. Fe-etz was studied to explore the effects of an incomplete spin-crossover on positron lifetime parameters. Average o-Ps lifetime (τ_{o-Ps}) in Fe-ptz shows unexpected trend at $T > T_{1/2}$ which is also present in the isomorphous but diamagnetic Zn-ptz (Fig. 1a) [2]. Additional NMR spectroscopic analysis (¹H, ¹¹B and ¹⁹F spin-lattice relaxation time (T_1) and spectrum measurements) [5] and X-ray diffraction measurements were carried out to reveal the underlying process.

Fig. 1. (a) Single crystal X-ray structure of $[Zn(1-n-propyl-1H-tetrazole)_6](BF_4)_2$ at 95 K (H-atoms are not shown). (b)-(d) o-Ps lifetime (big circles) and its relative intensity (small circles) for $[Fe(1-ethyl-1H-tetrazole)_6](BF_4)_2$, spin-crossover temperature $T_{1/2} = 105$ K (b); $[Fe(1-n-propyl-1H-tetrazole)_6](BF_4)_2$, $T_{1/2}^{1} = 135$ K and $T_{1/2}^{1} = 128$ K (c); $[Zn(1-n-propyl-1H-tetrazole)_6](BF_4)_2$ (d). Solid symbols: cooling, open symbols: heating direction. Diamonds in graph (d): ¹⁹F spin-lattice relaxation time (T_1) for $[Zn(1-n-propyl-1H-tetrazole)_6](BF_4)_2$, solid symbols $\omega_0 = 29.0$ MHz, open symbols $\omega_0 = 83.5$ MHz; the minima indicate that BF_4^- rotates above 40 K, analysis of the 90 to 150 K temperature region suggests changing anion dynamics.

2. Experimental

The alkyltetrazole ligands were prepared as described by Franke et al. [6] and the complexes themselves were prepared by the method of Poganiuch et al. [7]. The crude (polycrystalline) products were recrystallized from nitromethane to obtain single crystals. Single crystals were used to avoid the effects of grain boundaries on the positron-annihilation parameters.

The positron source was made by the deposition of ²²NaCl solution between two kapton foils. The source was placed between the pair of crystals and the source-sample sandwich was mounted in an evacuated cryostat. The pressure in the cryostat was kept at about 10^{-8} bar. The uncertainty of the temperature control was less than 0.1 K. The heating or cooling rate between two measurements was about 1 K min⁻¹. For the recording of lifetime spectra a fast-fast coincidence system was used. The spectra were collected in the 4096 channels of a multichannel analyser card with a 10 ps channel time. The time resolution of the system was about 270 ps. The spectrum evaluation was carried out with the computer program RESOLUTION [8].

3. Results and discussion

3.1. $[Fe(1-ethyl-1H-tetrazole)_6](BF_4)_2$

Fe-etz shows Ps formation (Fig. 1b) with a significant intensity both in the HS- and LS-state region (6% < I_{o-Ps} < 26%). I_{o-Ps} decreases with decreasing temperature throughout the whole temperature range, with two break-points: one at 170 K and the other at $T_{1/2}$. The most characteristic feature of the temperature dependence is the strong and monotonous increase in τ_{o-Ps} with the decrease in the temperature from the spin-crossover point (Fig. 1a). As the spin transition makes unpaired electrons disappear gradually upon cooling, the probability of the ortho-para conversion decreases and therefore τ_{o-Ps} becomes longer. The residual HS state Fe(II) ions ($\gamma_{HS} = 1/3$) induce ortho-para conversion even at temperatures well below $T_{1/2}$ and therefore $\tau_{o-Ps}(T)$ changes gradually instead of producing a steplike trend in the vicinity of $T_{1/2}$ (see Fe-ptz, Fig. 1c).

3.2. $[Fe(1-n-propyl-1H-tetrazole)_6](BF_4)_2$

Ps forms (Fig. 1c) with high intensity also in Fe-ptz both in the HS- and LS-state region (8% < I_{o-Ps} < 25%). I_{o-Ps} shows globally the same temperature dependence as in Fe-etz except the peaks at $T_{1/2}$ which can be attributed to the phase transition in the ptz complex. The o-Ps lifetime increases below $T_{1/2}$ (Fig. 1c). There is a pronounced step in τ_{o-Ps} of Fe-ptz between $T_{1/2}$ and 200 K where the $\tau_{o-Ps}(T)$ is controlled by the pick-off annihilation. The shape of the $\tau_{o-Ps}(T)$ curves are the same in both Zn-ptz (Fig. 1d) and in Fe-ptz at $T > T_{1/2}$ (Fe-ptz). The Fe-ptz and Zn-ptz are isomorphous but there is no spincrossover in Zn-ptz. Consequently, this lifetime trend between the $T_{1/2}$ and 200 K is not connected to the spin-crossover. (Probable underlying processes are discussed in Sec. 3.3.) The steplike increase in τ_{o-Ps} below $T_{1/2}$ in Fe-ptz is a clear sign of the spin-crossover since the disappearing of HS state Fe(II) ions reduces the probability of ortho-para conversion resulting in longer τ_{o-Ps} .

M. Bokor et al.

3.3. $[Zn(1-n-propyl-1H-tetrazole)_6](BF_4)_2$

 τ_{o-Ps} decreases by 30% when cooled from 200 to 90 K (Fig. 1d) and it is nearly constant at T < 90 K. Comparing $\tau_{o-Ps}(T > 130$ K) for Fe-ptz (Fig. 1c) and Zn-ptz (Fig. 1d), the trends are the same and the difference of the lifetime values is explained by the presence of unpaired e⁻ spins in Fe-ptz. To explain $\tau_{o-Ps}(T)$ for Zn-ptz above 90 K, NMR spectroscopic [5] and X-ray diffraction methods were applied. ¹H and ¹⁹F $T_1(T)$ (Fig. 1d) suggested that several changes of the dynamic structure — i.e. changes of the reorientational dynamics of propyl groups and anions — occur at 90 K < T < 150 K. The most likely sites where Ps exists are open spaces surrounded by the central ion, ligands, and anions. The observed decrease in τ_{o-Ps} with decreasing temperature indicates an increase in the electron density in the surroundings of o-Ps. Possible origins of this change in the electron density are the following. The contraction of Ps sites caused by slight changes in the structure of the crystal — X-ray structures rule this out. Changes in the dynamics of propyl chains and anions result in changed electron density distribution and so, τ_{o-Ps} is influenced — results of NMR analysis support this version.

4. Conclusions

 τ_{o-Ps} is strongly influenced by the abundance of unpaired electrons which can produce ortho-para conversion of the Ps. For the two investigated Fe-compounds it is understood that as the spin-crossover makes unpaired electrons disappear gradually as the sample is cooled down, the probability of the ortho-para conversion decreases and therefore τ_{o-Ps} becomes longer. As a consequence, if there is a significant intensity of positronium, τ_{o-Ps} detects sensitively the spin-crossover. The differences between the lifetime trends for the two compounds below $T_{1/2}$ can be explained by the effect of the residual HS state Fe(II) ions of Fe-etz. The increase in τ_{o-Ps} in Fe-ptz and Zn-ptz above 130 K and 90 K, respectively, can be explained by changes of the dynamic structure of the molecular groups in the vicinity of the Ps atoms.

Acknowledgments

This research was supported by the Hungarian National Science Fund (T014845), the Research and Development Grant of the Ministry of Culture and Education of Hungary (FKFP-0148/1997), and the Hungarian Academy of Sciences (AKP 97-33).

References

- A. Vértes, Zs. Kajcsos, L. Marczis, E. Brauer, J. Hüller, I. Zay, K. Burger, J. Phys. Chem. 88, 3969 (1984).
- [2] A. Vértes, K. Süvegh, R. Hinek, P. Gütlich, J. Phys. Chem. Solids 55, 1269 (1994).
- [3] R. Hinek, H. Spiering, D. Schollmeyer, P. Gütlich, A. Hauser, Chem. Eur. J. 2, 1427 (1996).
- [4] L. Wiehl, Acta Crystallogr. B 49, 289 (1993).

- 473
- [5] (a) M. Bokor, T. Marek, K. Tompa, J. Magn. Reson. A 122, 157 (1996);
 (b) M. Bokor, T. Marek, K. Tompa, A. Vértes, J. Mol. Struct. 410-411, 1 (1997).
- [6] P.L. Franke, J.G. Haasnoot, A.P. Zuur, Inorg. Chim. Acta 59, 5 (1982).
- [7] P. Poganiuch, S. Decurtins, P. Gütlich, J. Am. Chem. Soc. 112, 3270 (1990).
- [8] P. Kirkegaard, M. Eldrup, O.E. Mogensen, N.J. Pedersen, Comput. Phys. Commun. 23, 307 (1981).