
Vol. 95 (1999) 	 ACTA PHYSICA POLONICA A 	 No. 3

GAUSSIAN FLUCTUATIONS
OF MOLECULAR FIELD

IN QUASI-ONE-DIMENSIONAL ISING MODEL

Z. ONYSZKIEWICZ a AND A. WIERZBICKI ba

Magnetism Theory Division, Faculty of Physics, A. Mickiewicz University
61-614 Poznań, Poland

bDepartment of Chemistry, University of South Alabama
Mobile, Alabama, 36 688 USA

(Received November 13, 1998)

Quasi-one-dimensional spin systems described by an Ising-like Hamil-
tonian with a strong space anisotropy (s = 1/2) are investigated. Magnetic
properties of this model are examined in the approximation including Gaus-
sian fluctuations of molecular field. This paper reports an attempt at obtain-
ing more accurate results for Gaussian fluctuation of molecular field by an
exact formula for mean fluctuations of a spin.
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1. Introduction

Studies of low-dimensional or quasi-low-dimensional (QLD) spin systems
are characterized by a close coupling between theory and experiment because
of the rapidly increasing number of experimental works on real materials with
quasi-low-dimensional structures and properties [1]. These materials often corre-
spond remarkably close to certain idealized one- or two-dimensional spin models,
and are great challenges not only for physicists, but also for chemists and technol-
ogists. Low-dimensional magnetic systems have always been very attractive from
the theoretical point of view. Many non-trivial models are soluble in one or two
dimensions, while they are only approximately understood in three dimensions.
Therefore, the exact solution serves as a useful test of approximate mathematical
methods, and certain features of the low-dimensional solution remain relevant in
higher dimensions.

In this paper we shall consider only magnetic properties of quasi-one-dimen-
sional (Q1D) magnetic systems which are well described by the simple models of
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localized and ordered spins with the following Ising-like Hamiltonian with a strong
space anisotropy (s = 1/2)

where J1 and J2 are coupling parameters in the f—f' and f—f" directions, re-
spectively, and E' stands for summation over pairs of different lattice points. In
particular for Q1D systems we have

|J1| »|J2|, (2)
where J1 is the intra-chain coupling parameter. The symbol B is the external
magnetic field in the z direction.

The aim of our paper is to give a detailed analysis of the magnetic properties
of the Q1D spin model described by Hamiltonian (1), performed in the modified
Gaussian fluctuations approximation (MGFA) which has been proposed in the
communication [2] and paper [3]. In paper [3] it has been shown that MGFA can
be used for description of the quasi-two-dimensional spin systems. A comparison
with the exact results will test the suitability of the MGFA for description of Q1D
spin systems. In this work we will show that MGFA can be used for description
of the magnetic and thermal properties of Q1D spin systems provided that the
choice of the parameters of the theory is made taking into regard the size of mean
inhomogeneous fluctuations of the molecular field.

This paper reports an attempt at obtaining more accurate results within
Gaussian fluctuations approximation for Q1D spin systems by replacing the ex-
pansion based on classification of the Feynman diagrams with respect to powers
of the parameter 1/z, where z is the effective number of spins interacting with any
given spin, by an exact formula for mean fluctuations of a spin. The formulation of
MGFA allows us to dispose of certain veiled assumptions concerning the interspin
correlations taken in Ref. [4].

2. Modified Gaussian fluctuations approximation

As a starting point of the modified MGFA [2-3] we choose the following
decomposition of the Hamiltonian (11:
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Hence, we have the following decomposition of the Hamiltonian (1)

and N is the number of spins in the lattice.
Applying Eqs. (7) and (8) we obtain the free energy in the linear chain

approximation (LCA) [51

Equation (11) approximates the exact free energy F of model (1) by the free energy
of noninteracting Ising chains placed in a molecular field (10).

In the proposed approach we assume that the free energy of our model F0
can be found from the Gaussian distribution as the free LCA energy averaged over
molecular field fluctuations. expressed by Ea. (11). This value is

As follows from Eq. (7), the free energy F does not fluctuate, however, we
can assume that F0 fluctuates as this is only an approximate of the free energy
of the studied system. Thus, the assumption expressed by Eq. (12) is justified on
condition that the free energy F0 satisfies the following stationary conditions:
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is the average Gaussian fluctuations of the _molecular field.
As follows from (14), the free energy F0 is stationary for any finite average

fluctuations δ (S2 ), i.e., for |δ (S2 )1 < oo. Therefore, the condition (14) cannot be
used for determination of δ (S 2 ). However, we can do it with the help of the exact
identity

following from Eq. (5). Having calculated the derivative of (18) with respect to y

As follows from (20)

To avoid the disappearance of δ (S2 ) with increasing number of spins in a
lattice N, we assume that (see paper [3] for more details)

where Ń is the number of Ising chains making a cluster (with periodical boundary
conditions) of the size corresponding to the size of the averaged inhomogeneous
fluctuation of the molecular field. In our approach N is a parameter of the theory.

Substituting Eq. (22) to (17) we obtain the following expression for the
average Gaussian fluctuations of the molecular field:

Equations (12), (15) and (23) make a closed set of equations enabling calculating
of the mean value of the spin (Sz) and its averaged Gaussian fluctuation δ(S 1 ).
The proposed approach is based on the two assumptions: concerning the choice of
the free energy expression as a Gaussian average (12), and natural assumptions
as to the average Gaussian fluctuations of the molecular field δy.
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3. Numerical results

In order to carry out the calculations we have specified the magnetic lat-
tices as a honeycomb, square and triangular. Equations (15) and (23) have been
solved numerically assuming the value of Ñ = 3, 4, 5, ..., appropriate for a given
J2/J

1

 and number of nearest neighbours in a given lattice. The results are pre-
sented graphically. Figure 1 shows the relative Curie temperature tc = kBTc/J 1
versus the anisotropy J2/J

1
, as obtained within the molecular field approximation

(MFA), linear chain approximation (LCA) [5] (for Ñ = oo), and the approximation
assumed in the present paper (MGFA) as well as the exact results for a square lat-
tice (sq). For J2/J

1

 = 1 we obtained in MGFA for a square lattice tc = 0.584532,
while the exact value is tc = 0.567296 [7].

The plots tc = tc(J2/J

1

) calculated in MGFA have the broken lines (- - -)
as in this approximation below certain values of J2/J

1

, the Curie point becomes
only the lower limit of the paramagnetic phase existence due to the appearance
of a tricritical point. This is a defect of the MGFA as the exact calculations do
not indicate the existence of this point. The tricritical point appears also for other
lattices, as shown in. Fig. 2. The tricritical point temperature for all lattices studied
is a decreasing function of Ñ . This unphysical tricritical point can be eliminated
by assuming an appropriate value of Ñ  for a certain ratio of J2/J

1

. As follows
from Fig. 1, for a given Ñ  (for a square lattice Ñ> 3), there is a J2/J1 < 1, for
which tc calculated in MGFA is equal to the exact value of the Curie point.

Fig. 1. Variation of the Curie temperature tc (in relative units) with space anisotropy
J2 /Jl for MFA, LCA, exact [7] and MGFA (the present paper) for square (sq) lattice.
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Fig. 2. Dependence Curie temperature tc (in relative units) on space anisotropy J2/J

1

for honeycomb lattice (z = 1), square lattice (z = 2) and triangular lattice (z = 4).
Exact results are given by dots [6].
Fig. 3. Optimal value of the parameter  Ñ versus space anisotropy J2/J, for square
lattice.

Fig. 4. The dependence of relative magnetization (SZ) on relative temperature t for
different space anisotropies. J2/Ji obtained in MGFA (- -) and exact results (—) [7]
for square lattice.

Depending on the value of the ratio J2/J

1

, we can choose the optimum
value of Ñ . An example of such an optimum choice of Ñ (for a square lattice)
is shown in Fig. 3. The diagram Ñ  = Ñ(J2/J1) obtained is the so-called "devil
steps". As the parameter Ñ determines the size of inhomogeneous fluctuations of
the molecular field (see expression (23)) on the basis of Fig. 3, we can conclude
that with increasing spatial anisotropy — so with decreasing J2/J1 ratio — the
average size of inhomogeneous fluctuations of the molecular field increases. In the
limiting case of J2/J1  0, we have to assume that Ñ → oo, which corresponds
to the LCA approximation. 	

The above results indicate that the optimum choice of Ñ in investigation of
more complex spin systems within MGFA should not pose considerable problems.
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Fig. 5. Relative spontaneous magnetization (Sz) versus temperature t, calculated for
different space anisotropy J2/J1 and N = 3.
Fig. 6. Spontaneous magnetization (SZ) versus temperature t for square lattice for

Ñ= 5.

Fig. 7. Dependence of the average Gaussian fluctuation δ (Sz) (in relative units) on
temperature t for different J2/J1 and for sq lattice.
Fig. 8. Variation of Gaussian average fluctuation δ  (Si) (in relative units) with tem-
perature t for different J2/J1 and for sq lattice.

Figure 4 presents a comparison of the temperature dependence (t = kBT/J1)
of the mean spin moment, proportional to magnetization, calculated for a square
lattice in MGFA with the exact results [7, 8].

Figures 5-10 present the temperature dependence of relative magnetization
(Sz), Gaussian average fluctuations δ (Sz) of relative magnetization and average
Gaussian fluctuations of molecular field δy for different values of space anisotropy
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Fig. 9. Gaussian average fluctuation δ y of the molecular field against temperature t
for different space anisotropy J2/J1 and Ñ = 3 (square lattice).
Fig. 10. Temperature dependence of the average Gaussian fluctuation δ y of molecular
field for sq lattice and for different space anisotropy J2/J1.

J2/J1 for a square lattice. These figures show the hysteresis loops which result from
the appearance of the tricritical points which do not appear in the exact solutions
below which there are discontinuous phase transitions from the ferromagnetic to
paramagnetic phase.

4. Conclusions

On the basis of the results obtained in the reported work we can draw the
following conclusions:

(i) under a proper choice of Ñ , MGFA permits a correct description of the
properties of Q1D Ising like models for an arbitrary space anisotropy J2/J i . The
values of the Curie point tc calculated in MGFA for certain values of the ratio
J2 /Ji and for the appropriate choice of Ñ , are equal to the exact t, values, which
means that despite its formal simplicity, MFGA can be an effective and accurate
method for description of Q1D spin systems.

(ii) The MGFA can be easily generalised onto multisublattice spin systems
of the spin s > 1/2.

(iii) A relative simplicity and high accuracy of the MGFA make it a rec-
ommendable efficient tool for investigation of Q1D magnetic systems of complex
magnetic structure for which exact solutions are not known, such as e.g. meta-
magnetics characterised by a strong spatial anisotropy.

(iv) The modified MGFA can be successfully used for investigation of such
thermal properties of spin systems as entropy and heat capacity.
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