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The D-wave paired Fermi system is considered in the frame of gener-
alized gap equation obtained in a BCS-like approach. It is shown that the
thermodynamic functions of a system, as the thermodynamic potential, en-
tropy and heat capacity differences between the normal and superconducting
state are precisely defined functionals of the energy gap as a function of tem-
perature. The derived formulas are identical as those obtained for S-wave
paired Fermi system. It states that the developed formalism can be applied,
in practice, to investigation of real superconductors in which a singlet state is
realized. Some numerical results illustrating prospects and capabilities of the
presented formalism are given for chosen structures of the order parameter.

PACS numbers: 74.20.—z

1. Introduction
In the present investigations of heavy fermion, organic or cuprate supercon-

ductors the D-wave state is favored as the best candidate for really occurring
paired state (cf. [1]). The possible and permitted ground states in D-wave paired
Fermi system (superconductor) have been theoretically examined, in the frame of
the weak coupling theory, by Anderson and Morel [2].

The aim of this paper is to study some thermodynamic properties of such
D-wave states, based on their results. We are going to show that the general ther-
modynamic relations, and some final results, elaborated previously in the frame
of our parametric formalism for S-wave paired Fermi system [3-6], can be now
successfully transformed to the case of D-wave pairing. The basis for the para-
metric formalism is the generalized energy gap equation obtained in a BCS-like
approach [3, 4], and now respectively modified.

The new results are derived strictly analytically and what is worth to em-
phasize, they should allow one to broaden the class of superconductors which can
be investigated in the frame of the presented set of parametric equations. Now,
they could be applied to real superconductors in which a singlet state is realized,
although we do not know exactly which type of paired states occur.

(231)
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2. General relations
2.1. The energy gap equation

In the paper, we focus our interest on such theoretical models of supercon-
ductor, for which the energy gap equation can be written in the following, general
form:

It is convenient to refer the above notation to the paper [7]. Let us describe more
precisely the origin of Eq. (1) and all introduced above quantities. Analogously
as in [7] we start from the BCS equation for arbitrary pairing interaction, but
now taking into account only pure D-wave pairing of a system, i.e. only L = 2,
omitting the term V0P0 responsible for creation of S-wave pairing. Afterwards,
in the starting equation the summation over momentum space is replaced by the
integration over spherical angles (θ, φ), where the notation is used

which finally leads to Eq. (1).
Because only one Legendre harmonic L = 2 is considered, we deal now only

with the dimensionless coupling parameter g 2, which in general is equal to

where VL are coefficients of expansion of the pairing potential in series of Legendre
polynomials P2(23 •23'). Moreover

where 23 and 23 denote the direction of the quasipąrticle (electron) momentum on
the Fermi surface and N(0) is the density of states per spin and per unit volume
on the Fermi surface.

The functional Φin Eq. (1) is now of the form

where the function F(l1,l2 ) reduces to the standard tank for the classical BCS
model. The function F, as a crucial generalization of the BCS energy gap equation,
was originally introduced in [3]. The properties of F are analogous as for BCS case
i.e. it is restricted and can be approximated, in the limiting cases of the arguments
l1 ,l 2 , according to the relations

Let us note that for the classical BCS system F = 1. In the third chapter of
the paper we restrict our considerations and introduce the specific form of F for
D-wave paired superconductor. Now we still keep its general form.
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Let us discuss briefly the physical background of Eq. (1). It represents the
wide class of models of superconductor which can be obtained from BCS-type
Hamiltonian after including additional corrections of Fermi liquid interactions
in the system. The functional form of Φ(p) constitutes the generalization of the
weak coupling as well as Hubbard type approaches established in the literature
(cf. [8-10]). Moreover, such a structure of Φ allows one to transform the integral
in (4) into the more convenient form for further considerations in the next chapter.

Finally, it is worth to emphasize that the definition of (4) admits into con-
siderations a non-parabolic shape of the kinetic energy of quasiparticles. In such a
case, in the vicinity of Fermi level, the density of states is not anymore considered
as a constant, equal to N(0), but depends on ξ. Consequently, we deal with the
particle-hole asymmetry on the Fermi level. As an example, in the case of BCS-like
D-wave paired superconductor we may define the function F, which corresponds
to such particle-hole asymmetry, in the following way:

describes directly the degree of particle-hole asymmetry, for the particular shape
of N(ξ). Let us note that exactly on the Fermi surface I(0) = 1. Furthermore, if

is large, the relation I(ξ) -+ Fao must be fulfilled, according to the properties
of F (see (5)) and because then tank —> 1. We emphasize that the form of F in
Eq. (6) has only an exemplary character. The mentioned particle-hole asymmetry
has the interesting physical consequence, namely, if electronic density of states is
an oscillating function just in the Fermi surface vicinity, the critical temperature
of the superconductor is strongly enhanced, as it was shown in [11].

In the studied case of D-wave pairing we state that

where Δ(T) defines the temperature dependence of the energy gap. In turn, D(p)
characterizes the spherical angles dependence of the pairing and is a mixture of
spherical harmonics Y2m defined as

Above we assume that the equilibrium state of a superconducting phase can be
constructed as a superposition of the eigenvalue states Y2m,. According to (7) and
the normalization condition (Y2*m Y2m) = (1/4π)δmn , the coefficients dm must fulfill
the relation
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Physically, d, determine the contribution of particular eigenvalue states. More-
over, because

it must be also (|D 2 |) = 1.
Let us transform Eq. (1) to the more convenient form in further considera-

tions. Employing Eq. (3), Eq. (7) and the condition (8) the energy gap equation (1)
can be rewritten as a set of the equations

Note that the set of Eqs. (9) always have solutions if some equations disappear
and others reduce to the equivalent form. It takes place, for example, when D(p)
is of the form |2|

Then, non-vanishing equations reduce, respectively, to the forms

2.2. Thermodynamic potential

In order to consider the thermodynamic properties of the system we have to
derive the formula for z ΔΩ which defines the thermodynamic potential difference
between the D-wave paired and the normal state. Let us note that the differential
of the ΔΩ can be written in the form
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The relation (22) is identical with that obtained in [4] for S-wave paired Fermi
system. Therefore all presented there formulas for the entropy, heat capacity, and
energy gap are valid also in the case of D-wave paired system.

In order to derive ΔΩ we have to know the form of Y(r). To find Y(r) we
deal with Eq. (19), applying the same analytical procedures performed in details
previously for S-wave pairing in [3]. Namely, we first investigate Eq. (19) in two
characteristic limits T —>O andT —> Tcand using the properties ofF(see(5))we
get the relations between WD, Tc , and D(0). Next we eliminate them from Eq. (19)
and solve it with respect to Y(r). We have
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2.3. Entropy and heat capacity

Let us write down the relations for some other basic thermodynamic quan-
tities, which can be obtained from Eq. (22), now in the case of D-wave pairing,
according to [4]. Applying the basic relations between entropy, heat capacity, and
thermodynamic potential given in [12], we get from Eq. (22) the entropy difference
between D-wave paired and normal state in the form

Based on Eqs. (26), (27) and the fundamental thermodynamic relations between
the entropy and heat capacity [12], we can express both of them as functionals of
the energy gap in a function of temperature Y(r). We have

Furthermore, it is worth to emphasize that the last Eq. (29) can be reversed.
Hence the energy gap as a functional of the heat capacity can be written down as
follows [11]

After putting in Eq. (30) X = 1 we have Y(1) = O and then one can find Y(0),
i.e. the reduced energy gap at T = O. Hence, we may compare it with theoretical
values obtained for some D-wave or S-wave paired states.

Moreover, Eq. (29) allows us to state that ΔC as well as Cs, in the limit of
T —> 0, is a function of the form (cf. Appendix)
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where a and b are constants. Hence we conclude that DY(X)/8X must always tend
to zero if only T --> O. In other words, the energy gap as a function of temperature
must have a plateau in the zero-temperature region. The last two relations. (30)
and (31) are valid for any singlet paired superconductor.

3. Results for BCS -like system

In order to illustrate the developed general formalism, let us restrict now our
considerations to the BCS-like model of D-wave paired superconductor. It allows
one to obtain the analytical and numerical results for some chosen D-wave paired
states. The function F is now defined in the form [3]

According to the paper of Anderson and Morel [2], the D-wave ground state con-
figuration is a mixture of spherical harmonics Y20 i Y22, and Y2,-2. More precisely,
the most favorable D-wave solution is in the form

Taking the above result into account we postulate to investigate slightly more
general case of a mixture of spherical harmonics

The parameter e, which in [2] is equal to 1/2, is now a real number from the
interval O < ε< 1 and entirely determines the form of the equilibrium state of the
system, when the D-wave coupling is included. We admit also that now Δ (T)

=Δ£ (T) can depend on the given state. After some calculations and developing the
forms of Y20, Y22, Y2-2, |D| as a function of ε reduces to the form

with x = cos 8. The relation (34) defines the angle dependence of the energy gap
in the case under consideration.

For such chosen states the relation between 	 and T, (which now depends
on e) takes the form

where Eq. (25) was employed with Fcc, = 1 and the integral equal to ln(π/2eC)
(see [3]). Let us note that for all ε

where πe-C = 1.76 is a ratio's value for standard BCS case.
Let us illustrate the obtained results graphically. The plot of the above char-

acteristic ratio Δ(0)/T, (divided by πe—C) as a function of e, according to Eq. (35)
and using Eq. (34) is depicted in Fig. 1. Note that Eq. (35) after integration over
spherical angles depends only on E. The maximum in the plot for ε  = 1/2~0.71



238 	 R. Gonczarek et al.

Fig. 1. The characteristic BCS ratio Δε (0)/T cdivided by πe—C as a function of ε
calculated numerically according to Eq. (35) using also Eq. (34); e is a real number O <

e < 1 and determines the form of the equilibrium state (mixture of eigenvalue states),
see (33). The characteristic and extreme values of the ratio in the plot are the following:
0.75 for e = 0, 0.89 (maximum) for ε = 1/√2= 0.71 and 0.78 for ε  = 1. The maximum
value of the ratio corresponds to the most favorable D-wave state (with ε  = 1/ √2)
determined by Anderson and Morel in [2]. Note also that ∆  /Tc < πe—c = 1.76 for
all e.

corresponds to the optimal D-wave ground state configuration discussed in [2]. At
this point, the coupling of the Cooper pairs should be the strongest. For some other
extreme values of the plot see description. Figure 1 is helpful in interpretation of
Fig. 2 and Fig. 3, which are directly related to it. In turn, for all temperatures
from O to Tc we have

The above ratio given by (36) is plotted, for the exemplary set of E from Fig. 1
(see description), in Fig. 2. The curves in the left plot correspond to the values of
e from the interval O <ε< 1/", i.e. from O to the maximum in Fig. .1 and in the
right one, to some ε from the interval 1/√2<ε<1 , i.e. from the maximum to
1, respectively. This two separate pictures of Fig. 2 should help one to recognize
the dynamic of changes of Δ(T) with ε (i.e. the influence of ε on the strength of
Cooper pairing).

Based on Fig. 2 we can also approximate the relative change of the ratio
.∆E (0)/Tc with respect to ε . It does not exceed 10%.
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Fig. 2. The reduced energy gaps as a function of reduced temperature obtained nu-
merically according to Eq. (36). The left plot presents the curves which correspond
upward to e and max[Δε(T)/Tc] according to schematic form: (e;max[Δe(T)/Tc ]):
(0.00; 1.32), (0.10; 1.34), (0.20; 1.38), (0.40; 1.48), (0.60; 1.56), (1/√2; 1.58) — bold line.
In the right plot the curves correspond upward to e and max[Δε(T)/Tc] according to
the same schematic form: (1.00; 1.38), (0.80; 1.56), (1/√2 ; 1.58) — bold line (compare
with Fig. 1).

Let us notice that according to Eq. (29) the heat capacity leap in the limit
T = Tc reduces to the form [12]

In order to derive the form of the above formula for D-paired systems we
have to employ Eqs. (4), (10) and (32), then after some transformations we find

Δ as a function temperature forT —> Tc.Taking into account the normal part of
the heat capacity [13]

fulfills the conditions: 1.429 < (|D| 4) < 2.143 and (|D|4) = 1.429 for ε=1/√2
and (|D|4) = 2.143 for ε=Oorε= 1,which ensure the reduced form of heat
capacity in relation to its normal value at T = Tc is always smaller for D-wave
systems than for the BCS state (where (|D|4) = 1). Using the general paramagnetic
form of ΔC = Cs — Cn, from Eq. (27) and the function Y(r) (Eq. (24)), as well
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Fig. 3. The plots of the reduced heat capacity CS of D-wave superconductor as a
function of reduced temperature calculated numerically according to (29) and (24), for
considered previously (see description of Fig. 2) values of e (for different D-wave paired
states). The curves in the left plot correspond upward to ε = 0, ε = 0.2, ε = 0.4,
 ε=0.6, ε = 1/√2, respectively, and for T = Tc they achieve values: 1.666, 1.701, 1.811,

1.961, and 1.998. In the right figure the curves correspond upward to ε  = 1, ε = 0.8, and
ε=1/√2, respectively, and forT =T

c

, they achieve values: 1.666, 1.961, 1.998. The set
of ε is the same as in Fig. 2 for comparison. Note that for 0.3 < T/T

c

 < 0.4, the above
curves intersect each others and below T/T

c

, = 0.3 they fulfil inverse relations than for
large temperatures. Moreover, for T/T

c

, < 0.05 the heat capacity for all ε becomes very
small (the detailed explanations of these facts are given in the paper).

as X(r) (Eq. (37)), we may find ΔC numerically. Eliminating the normal part
of the heat capacity we get the shape of a reduced heat capacity C S of D-wave
paired superconductor, as a function of reduced temperature, from O to T,. Such
forms of C s (T/Tc )/Cn (1) for the set of e previously chosen, analogously as in
Fig. 2, are depicted in Fig. 3. Hence the number of curves in Fig. 3 is the same
as in Fig. 2. It can be noted that all obtained curves intersect each others in the
region of temperatures 0.3 < T/Tc < 0.4, and as a result, in the limit T -> O the
heat capacity and hence the entropy tend to zero more rapidly if the heat capacity
achieves larger values at Tc . Moreover, considerations presented in Appendix allow
us to state that the temperature dependence of Cs (T) in the limit T —>Ois
different than for BCS systems. One possible, phenomenological explanation seems
to be the following: because of the structure of 6 at T —> O for some ε, when Δ
might be very narrow in some regions of spherical angle space, the normal part of
the system dominates, and hence we can observe more extensive contribution of
the linear component of the heat capacity, which dominates over the second one,
i.e. 2ΔaΔ/8T, and always exceeds pure BCS component. Note that 2Δ8Δ/8T
component can be a specific function of temperature, quite different than for BCS
systems. Afterwards, when T -i T, and 6 vanishes, the properties of systems
depend on e and the heat capacity leap becomes greater if the structure of 6
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is more homogeneous and (|D|4) is to nearer one. Based on these two facts, we
maintain that in the intermediate regions of the plots they must intersect each
other. Some other aspects of this problem are discussed also in Conclusions.

We do not insert plots of the thermodynamic potential and entropy differ-
ences between D-wave paired and normal state, but only postulate that the state
for which D E (T) reaches its maximum (for ε =1/√2) is preferred for all temper-
atures from O to Tc (see Fig. 1). This is in agreement with the results in [2].

4. Conclusions

The above formalism developed for D-wave paired Fermi system allow us to
evaluate thermodynamic properties of a system based on the form of the energy gap
as a function of temperature. Moreover it reveals that the general thermodynamic
formulas Eq. (22) and Eq. (26)—(30) are identical as those obtained for S-wave
paired system in [4-6] and [11].

This fact encourages us to assume that the elaborated formulas are universal
for arbitrary BCS-like singlet paired Fermi system and, in general, the characteris-
tic thermodynamic properties of the system are entirely determined by the shape
of the energy gap vs. temperature. Such a shape can be taken from experimen-
tal data, if we only believe that the system under investigation is BCS-like and
quasiparticles are paired in a singlet state.

The forms of the heat capacity C S obtained for the different D-waves paired
states, as defined above, confirm results of the developed formalism. We state that
for some D-wave paired states in the case if e tends to O or 1, the linear term of the
heat capacity dominates in the T --> O region. Such properties of the heat capacity
seem to be strange when we compare them to the results for classical BCS system,
when we observe an exponential increase. However, now the paired states are not
isotropic and hence the expression Δ(T)IDI/T, even for T close to zero, can be
small in some regions of spherical angle space. Just these small contributions of

Δ(T)IDI/T are responsible for the linear part of the heat capacity. Furthermore,
we note also that such linear terms of the heat capacity should appear always if
pairing state is not isotropic or pseudoisotropic, however sometimes they could be
difficult to observe in the plot.

The above statement is especially evident after including the results pre-
sented in Appendix. According to them the linear term of low temperature heat
capacity vanishes only if the following equation is fulfilled:

which is true only in the case of the BCS energy gap. Hence, if a shape of an energy
gap differs from the BCS one, a linear term of low temperature heat capacity must
exist.

Appendix

We show that after some algebraic transformations one can obtain the general
form of the heat capacity difference in the limit T -> O.
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According to Eq. (29) we have

However, the last form of ΔC is correct only if the first integral is convergent.
Then, using L'Hôspital's rule we obtain

where the other terms must vanish if the integral is to be convergent.
The last formula proves that AC can be always performed in the form of

Eq. (31).
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