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The differential scanning calorimetry measurements were made on a se-
ries of bismuth-iron—phosphate glasses over a temperature range around the
glass transition temperature. The activation energy for structural relaxation,
ΔΗ, was determined and found to increase with the metal-to-phosphorus
ratio. The differential scanning calorimetry data were analyzed using the
Adam-Gibbs—Scherer model of the glass transition. This analysis suggests
that these glasses undergo a transition from the strong to the fragile glass
regime as the metal-to-phosphorus ratio is increased.

PACS numbers: 65.40.+g

1. Introduction

The thermodynamics of the glass transition was first pointed out by Kauz-
mann [1] who reported that, without the glass transition, the entropy of the super-
cooled liquid would drop below that of the crystalline solid at a temperature Τ2.
Experimentally, however, the glass transition always occurred at a temperature Tg
above Τ2, thus avoiding any thermodynamic catastrophe [2, 3].

The Adam-Gibbs model [4] proposed that the major driving force for the
glass transition was the excess configurational entropy of the supercooled liquid in
the temperature range between Τ2 and the thermodynamic melting point. In the
present work, the Adam-Gibbs model with an important modification proposed
by Scherer [5] was used to analyze the differential scanning calorimetry (DSC)
data of a series of bismuth-phosphate glasses.

The building blocks network in phosphate glasses are ΡO4 tetrahedra that are
corner linked. For the bismuth and bismuth-iron-phosphate glasses investigated,
the topology of the glass network varies significantly as the metal-to-phosphorus
ratio is changed. The pure vitreous P2O5 is built up of an infinite network of ΡO4
tetrahedra, the remaining unshared oxygen being linked to the phosphors by a
double bond. The addition of Bi 2 O3 to this vitreous structure will transform some
of P=O bonds into crosslinking.(bridging) bonds of the type P-O-Bi and P-O-P.
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Upon a further increase in Bi 2O3 concentration the Bi ions may enter the glass
network interstitially as network modifiers which would result in the break down
of some bridging bonds in the network [6].

Α suitable parameter for characterizing the overall structure of these phos-
phate glasses is Q, the average number of nonbridging oxygens per PO 4 tetra-
hedron. The value of Q can be computed directly from the composition of the
glass [7-9] and is given by

where [P], [Bi], [Fe], and [H] are the molar concentrations of each element in the
glass. In this study, there is no hydrogen in the glasses and its value has been
neglected in the calculations (Eq. (1)). For phosphate glasses, there is always at
least one nonbridging oxygen, even for pure Ρ 2 O 5 glass, and hence 1 must be
added to the metal-to-phosphorus ratio (Eq. (1)). Since Q is defined as the aver-
age number of nonbridging oxygens per PO4 tetrahedron the number of bridging
oxygens per PO4 tetrahedron is simply 4— Q. In the present work, DSC measure-
ments are used to study the structural relaxation dynamics of a series of bismuth
and bismuth -iron-phosphate glasses in which the Q of the phosphate network is
changed.

2. Experimental work
Bismuth and bismuth-iron-phosphate glasses were prepared from laboratory

reagent on analar P 2 O 5 , Bi2O3 and Fe 2O3 using aluminum crucibles (of 100 cm 3

capacity) heated in an electric furnace open to the atmosphere. The reagents were
mixed and heated at 850-1000°C. The molten glasses were poured into a preheated
boron nitride mold and .annealed at the proper temperature.

The scanning calorimetry measurements were made with a Perkin—Elmer
DSC-4 using crimped aluminum sample pans and a dry nitrogen atmosphere. Α
glass was flrst heated to a temperature between 50 and 100 Κ above the glass
transition where the glass was in both structural and thermal equilibria: The
sample was cooled through Tg to room temperature at a constant cooling rate
of between 0.1 and 20 K/min. The glass was then reheated at a constant rate of
10 K/mm through the glass transition region and the heat flow into or out of the
sample was recorded.

3. Results and discussion
Using the procedure in Refs. [10, 11], the normalized heat capacity data,

Cn, were determined. The heat capacity data at a temperature around the glass
transition region are independent of time and are approximated by a linear function
of Τ as shown in Fig. 1. Well below Τ5 , a heat capacity for the glass phase can
be defined as: Cpg = Ag + BgT, where Ag and Bg are constants determined by
a least-squares fit of the data. Similarly, well above Tg, a heat capacity for the
liquid phase can be defined as: Cpl = Al + BIT. Moynihan et al. [10] showed that
a natural self-consistent definition of the fictive temperature Tf is
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where Cp is the measured heat capacity of the glass and T* is a temperature well
below the Τ5 , where the material is in both thermal and structural equilibria. Then
the normalized heat capacity Cn is given by

The fictive temperature, Tf, is equal to the thermodynamic temperature, T, when
the glass has completely relaxed. Far below the glass transition region, the struc-
ture is essentially frozen and hence dTf/dT = 0, while well above the glass tran-
sition Tf = Τ. The normalized heat capacity, Cn, varies from 0 at temperatures
well below Tg to 1 at temperatures well above Τ5 .

The activation energy for structural relaxation, ΔΗ, was calculated for the
present glass from the plot of the cooling rate q versus the limiting fictive temper-
ature Tf as described in Ref. [10]. And Tf was obtained from Eq. (2) by choosing
Τ to be well below Tg. Plots of the logarithm of the cooling rate q versus the
inVerse of the glass transition temperature are shown in Fig. 2 for two of the
glass compositions studied. The activation energy for structural relaxation, ΔΗ,
varies from 44 K cal/mol for pure Ρ2O5 glass [12] to 350 K cal/mol for an iron-rich
bismuth—iron—phosphate glass. The variation of ΔΗ with the topology of the glass
is illustrated in Fig. 3, where ΔΗ is plotted versus the average number of nonbridg-
ing oxygens per PO4 tetrahedron (Q). From Fig. 3.we can see that ΔΗ increases
systematically with increasing Q. There may be, however, a slight decrease in ΔΗ
as iron is initially added to the bismuth phosphate glasses.

The DSC data for the present glass can be fitted to the Adam- Gibbs-Sherer
(AGS) model. The continuous heating or cooling at a constant rate can be thought
as a series of differential temperature jumps dT followed by isothermal holds which
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last for a time, dt =dT/q, where q is the rate of heating or cooling [10, 11]. If a
glass, initially in both structural and thermal equilibria at a temperature Τ0 , is
subjected to a series of small temperature jumps dΤi at a time ti, the response
of the glass structure can be expressed as a superposition of the responses to the
various temperature changes at their respective times

The degree to which the glass structure has relaxed is expressed in terms of the
fictive temperature, Tf(t). The relaxation function 0(t) is a function of both tem-
perature and time and is equal to 1 for t = 0 and 0 for t = οο.

The dynamics of the glass transition is included in the particular form that is
assumed for φ(t, T). For infinitesimal temperature jumps,·a convenient expression
for the time dependence of φ(t) is the stretched exponential [13-15]

where 0 < β < 1 and is assumed to be independent of temperature. This form of
φ(t) can be thought as corresponding to a distribution of relaxation paths each with
a different relaxation time. For values of β near 1, the distribution of relaxation
times is narrow, while for values of β near 0 the distribution of relaxation times
is broad. Many workers [16-18] have used a purely phenomenological equation for
τ(T, Tf). Although the use of this equation gave excellent fits to the data, some of
the model parameters were without any clear physical significance.

Recently Scherer [5] suggested another form for τ(T, Tf) based on Adam—
Gibbs equation [4]

• where Δμ is the free-energy barrier hindering rearrangement of a small segment
of the glass network, S is the configurational entropy of the smallest part of the
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network capable of rearranging [S 	 1n(2)], and S is the macroscopic configura-
tional entropy. In the region of the glass transition, the configurational entropy is
given by

where Τ2 is the Kauzmann temperature and ΔC is equal to the configurational
contribution to the heat capacity in the region of the glass transition. A bet-
ter approximation was suggested by Hodge [19], he reported that, if one takes
ΔC = C0 /T, then in the high temperature limit (where Tf = T) the expres-
sion for τ reduces to the Fulcher equation which fits the viscosity data for many
glasses [20]. In order to check whether this approximation is valid for the present
phosphate glass data, it is noted that C0/T can be expanded as

where Τ0 is a temperature in the middle of the glass transition range. This approx-
imation for ΔC can then be compared with the experimental finding that

For C0/T to be a reasonable approximation to ΔC in the vicinity of the glass
transition, it requires that

As can be observed in Table I which shows the experimental values of (Α1 - Ag )
and (Β1 - Β5 )/(Aι - Ag), this was indeed found to be the case.

Using the approximation of ΔC = C0/T, the relaxation time is given by

where D ΔμS*cT2/C0R. Experimentally, C0 is approximately given by Τg ΔC(Tg ).
The values of A, D, Τ2 and β were determined for the present glass compo-

sitions by using Eqs. (4), (5) and (8) and a nonlinear fitting procedure as described
by Bevington [21].

Figures 4a-f show typical examples of the best fits of the normalized heat
capacity data to the Adam-Gibbs-Scherer model for the present glass systems. The
best values of the fitting parameters for all of the present glass systems studied
are given in Table II.

The calorimetry data taken by Martin and Angell on pure Ρ2O5 [12] were
also analyzed using the same model for structural relaxation. The approximate
best fit to the P2O5 calorimetry data is shown in Fig. 5.

The apparent activation energy for structural relaxation, ΔΗ, implicitly as-
sumes that above Tg the relaxation time, τ, will be proportional to exp (ΔΗ/KΤ)
[10]. As has been noted by Refs. [19, 22], one can relate ΔΗ to the parameters of
the AGS model. At temperatures slightly above Tg, Tf = Τ and we can equate
the temperature coefficient of τ as given by Eq. (8) with ΔΗ. This requirement
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implies that Rd In τ/d(1/T) = ΔΗ for temperatures near Ϊ. The relationship
between ΔΗ and the ASG parameters is

The above equation is only valid for temperatures near Τ5 , and this result depends
on the fact that any temperature-dependent rate can be fitted to the Arrhenius
law if the temperature interval is sufficiently narrow. It can be seen from Fig. 6
that there is a linear correlation between the apparent activation energies ΔΗ
(determined as in Fig. 2) and ΔΗ (calculated from Eq. (9)).

The qualitative concept of a strong or fragile glass was introduced by An-
gell [23] to describe the stability of intermediate range order in the liquid region
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above Tg against a temperature increase. Strong glasses have tetrahedral networks,
which tend to resist the breakup of the intermediate range order. These glasses
typically exhibit a rather slow decrease in the shear viscosity with increasing tem-
perature. However, fragile glasses usually have a large number of ionic or metallic
bonds that produce a high degree of configurational degeneracy. With increas-
ing temperature, the intermediate range order is rapidly destroyed and the shear
viscosity decreases rapidly. By plotting the log of the viscosity or relaxation time
above Tg versus Tg /T, we can distinguish strong network glasses from fragile ionic
glasses. The viscosity data from the strong glasses are often well approximated by
the Arrhenius temperature dependence and, hence. these data fall on a straight
line with a good slope when plotted versus Tg/T. The viscosity data from the
fragile glasses are better approximated by the Fulcher equation (Eq. (8)) which,
on a normalized viscosity plot, decreases rapidly for temperatures just above  Tg

and exhibits substantial negative curvature at higher temperatures.
At temperatures above the glass transition, the behavior of the viscosity

(which is proportional to the relaxation time) of the bismuth and bismuth—iron-
phosphate glasses can be deduced using Eq. (8) and the best fit parameters for D
and Τ2 given in Table II on condition that above Tg , Tf = Τ.

The author wishes to thank very much Prof. Cerdera and his group  in
Campinas University Brazil for the experimental facilities and very useful dis-
cussions during this work.
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