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The quantum model of quasi-one-dimensional generalized Fibonacci
semiconductor superlattice with the mass of charge carriers depending on
the position in superlattice is formulated. The Landauer electrical conduc-
tance σL of generalized Fibonacci semiconductor superlattice is studied an-
alytically and numerically. The dynamical maps allowing us to calculate σι
of the studied systems are presented. It is shown that σ1, as a function of
incident energy Ε of charge carriers oscillates strongly and exhibits the res-
onant character. We have verified numerically that σL (Ε) reaches its local
maximum for energies Ε corresponding to energy eigenvalues of charges in
superlattice.

PACS numbers: 73.40.-c, 73.20.Dx, 73.61.Ey

Recently in Refs. [1, 2] we have proposed and developed the dynamical maps
approach to calculations of the Landauer conductance σL [3] of the quasi-one-di-
mensional generalized Fibonacci superlattices. Our results are an extension of the
previously obtained maps [4] in a different context to the case of: (1) more gen-
eralized classes of aperiodic systems, (2) unimodular complex matrices. We found
also a new algebraic proof of the trace maps derived in Ref. [4].

In this report we study the Landauer conductance (LC) of quasi-one-dimen-
sional generalized Fibonacci semiconductor superlattice (GFSS) with nonconstant
mass of charge carriers (CC). .

Let us start with a short description of the construction of one-dimensional
generalized Fibonacci lattice (GFL) [4]. Let A and B denote two segments, the
lengths of which are da and db , respectively. We construct GFL of type (n, m) by
-the iterative process: S1 = .Ci , S2 = A , Sl+1 = (Sl)n(Sl-1)m , where n and m are
natural numbers; the index 1 defines the generation number of GFL, (Sl)n and
(Sl-1)m mean n and m repetitions of Sl and Sl1, respectively.

We place the rectangular potential barrier with the height U a (Ub) and width
ba (bb) in the middle of segment A (B). We assume that the mass of charge carrier
is equal to μ under the potential barrier and m in the well region. Let us take the
wave function in the form Ψ(z) = A exp (ikz) + B exp(—ikz) at the left boundary

(514)
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of the segment (the left end of segment is placed at the beginning of OZ axis
and the centre of rectangular barrier has coordinate d/2, in this way the barrier
occupies the interval [(d- b)/2, (d+ b)/2]), Ψ(z) = A' exp(βz) + Β' exp(-βz) in
the potential barrier region and Ψ(z) = C exp [ik(z - d)] + D exp[-ik(z - d)] at the
right boundary. Applying the standard continuity conditions for the wave function
Ψ and its first derivative (1/m)(d Ψ/dz) we obtain the relation

and k 2 = 2mΕ/ħ2, /12 = 2μ(U - E)/1 2 , Ε denotes the energy of CC, μ (m) is
the effective mass of CC in the barrier (well) region, U = Uα (Ub), d = da (db ),
b = ba (bb ) for segment A (ß). It is easy to verify that the matrix Μ is unimodular,
i.e., det(M) = 1.

The transfer matrix (TM) Ml+1 for the whole Fibonacci structure of
(l + 1)-th generation is equal to the product of elementary transfer matrices Μ
(cf. Eq. (1)) corresponding to segments A and B

where N(l + 1) denotes the total number of segments in the studied structure,
Υl+1 = Re(Ml+i)1,1, Zl +1 = Im(Ml+i)i,i. The Landauer conductance [3]
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where Un(x) denotes the Chebyshev polynomial of the second order.
Let us specify the system under consideration. We put Ua = 0, Ub = U,

ba = 0, bb = db = b, da = a. In this way we define the system containing two
kinds of semiconductor layers distributed quasiperiodically. The potential wells
correspond to the A-type layers and the barriers to B-type layers.

We have performed the numerical calculations for n = m = 1. In Table we
present a few lowest generations of simple Fibonacci semiconductor superlattices.

Figure 1 presents the LC spectra calculated for the GaΑs/Αl 0.3Ga0.7As
nanostructure when either the effective mass difference between these materials
has been taken into account or not. We calculated also numerically eigenenergies
being the solution of the eigenvalue problem ΗΨj = Ε^ Ψj for the structure un-
der consideration. We imposed the boundary conditions Ψ = 0 at the ends of the
structure (which is equivalent to infinite potential barriers). The eigenvalues Ε
(for the case mb ψ ma ) are plotted as the short vertical lines at the top of Fig. 1.

The dimensionless conductance T/R versus energy Ε of CC and the ratio
mb/ma is depicted in Fig. 2.

Figure 3 shows the Landauer conductance T/R versus energy Ε of CC and
the well width a.
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We summarize the main results of the presented studies as follows:
1. The Landauer conductance as a function of incident energy of CC shows the

resonant nature which is evident in all figures.
2. We observe correlation between maxima of σL(Ε) and eigenergies of CC

in GFSS. Most of the computed energies correspond to resonance peaks in
the LC spectrum. It can be verified that the other eigenstates are localized



518 	 W. Salejda et al.

at the surface of the structure (they are the consequence of the boundary
conditions).

3. Effective mass difference between well and barrier materials leads to a sig-
nificant shift in the spectrum of LC (cf. Figs. 1 and 2).
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