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A well-known sum rule obtained for electron transitions between the
atomic states by Thomas, Reiche and Kuhn (TRK) is examined for the
case of transitions between delocalized electron states in cubic lattices. A
characteristic point of the original TRK sum rule for the atomic states was its
lack of dependence on the initial state of transitions. This situation holds also
for the free-electron states in a metal but is changed in the case of electrons
influenced by the presence of the field of the crystal core. Corrections to
the original TRK result can be represented as a function of the quantum
parameter labelling the initial electron state. Other moments of the spectral
distribution function than those leading to the TRK sum rule have been
calculated. A comparison of the relations found between different spectral
moments for solids with similar relations obtained by Traini for the spectral
moments of the atomic states has been done.

PACS numbers: 78.20.Bh

1. Introduction

For the Bloch states describing electrons in perfect crystals there exists a
strong selection rule which allows for electron dipole transitions to be done be-
tween the electron states belonging to different electron bands. Simultaneously,
the rule forbids similar transitions between the states lying within the same band.
This situation makes transitions in a solid formally similar to that observed in
an atom because of often finite, and rather large, energy distances between the
bands. At the same time, the situation contradicts the well-known property of the
allowed low-energy transitions between the free-electron states in a solid which
are obtained when, instead of Bloch's boundary conditions, the states satisfy the
condition of vanishing at the crystal boundary. In the last case the electron states
are represented by the standing-like wave functions. Similar low-energy transitions
between electron levels should occur also in the case when the periodic potential

(49)
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of a perfect crystal lattice is considered, but the Bloch wave functions are replaced
by the standing-like wave functions. Such a calculation of the band states can be
done in the framework of the linear combination of atomic orbitals (LCAO) ap-
proximation, and consequences of the allowed dipole transitions obtained within
one band can be examined.

In the present paper we demonstrate how the well-known Thomas—Reiche-
Kuhn (TRK) sum rule for the dipole transitions between the electron states in an
atom (Sec. 2) is modifled in the case when electrons belong to one s-like electron
band in a solid. First, in Sec. 3, we discuss in some detail the problem of the bound-
ary conditions and their influence on the dipole transitions in a solid, whereas the
tight-binding formalism suitable for calculations performed for a special case of
solids having cubic lattices is presented in Sec. 4. The deviations from the TRK
sum rule (Sec. 5) obtained on the basis of the tight-binding approximation of Sec. 4
originate not solely from the change of the electron mass at the band limit, but
are due also to corrections dependent on the values of the quantum parameter
labelling the electron states.

The TRK sum rule for an atom represents in fact only the first moment
of the electric-dipole strength distribution function of that atom. However, other
moments than the first one can be calculated for atoms and a corresponding cal-
culation of the moments is presented in Sec. 6 for the case of the free-electron
spectrum assumed for the electron states in a solid; the states belonging to that
spectrum are extended throughout a large spherical block. In Sec. 7 the moments
with a negative index obtained in Sec. 6 are discussed from the point of view of
the influence which can be exerted on the free-electron results by a crystal lattice.

2. Sum rules for electron transitions
between the atomic quantum states

Transition probabilities for an idealized one-electron problem, in which we
merely deal with a single electron in a central field of an atomic core and ne-
glect interactions with other electrons except for those described by the core, lead
to some important general theorems represented by the so-called sum rules, see
e.g. [1-3].

Perhaps the best known sum rule in the atomic theory is the TRK sum
rule [4-6]. This rule relates the dipole terms zq i between the quantum levels q)
and |i) which are coupled by the electric potential field directed along z-axis,
namely

with the energy differences of the states | q) and |i) given by

Let |i) be an initial level and q) is a finite level. The sum rule is represented by
the following formula:
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Energies Ε and Eq are the eigenvalues of the atomic Hamiltonian Ha , the terms
fqi are called the oscillator strengths. The summation runs over the complete set
of the energy eigenstates [4-6].

The rule is important in the atomic, or molecular, optics. The so-called
response function — or the electric-dipole strength distribution function — of the
system is

where ħω is the energy transferred to the system. If the state q) is in the contin-
uum, the sum must be replaced by an integral together with a substitution of an
appropriate density of states, see e.g. [7, 8]. The polarization vector of the external
field is applied in Eq. (4) in the z-direction.

Formula (4) describes the strength distribution function of the system ex-
posed to an external radiation of frequency ω in the long-wavelength approxi-
mation. This approximation means that the linear dimensions of the system are
assumed to be small in comparison with the wavelength of the incident light, so
solely the dipole terms (1) enter the strength distribution function (4). The energy
conservation in Eq. (4) is represented by the delta-function factor. The spectral
distribution of the atomic oscillator strengths has been reviewed, some time ago
in Ref. [9]. More recently the problem of the TRI{ sum rule for a many-particle
atom has been raised in Ref. [10]. Parallel, the moments of the oscillator strength
distributions of the order higher than one which is represented by the TRK sum
rule have been calculated [8, 11]. This derivation of the sum rules of different kinds
appeared useful in the calculation of the particle excitations in the Bose superflu-
ids [12] and also became important for the static response function for longitudinal
and transverse excitations in the superfluid helium [13].

A direct application of the TRK sum rule comes into play when the total
photoabsorption cross-section σD (ω) is calculated in the long wavelength approx-
imation

The total photoabsorption cross-section (5) integrated over the whole spectrum of
frequencies ω gives

Taking into account (2), expression (6) — with the accuracy to a constant mul-
tiplier — is identical to the left-hand side of Eq. (3). Formula (6) can be next
transformed with the aid of the closure property for the eigenstates. We obtain
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because z commutes with the position-coordinate dependent part of Ha, as well
as the components of the kinetic energy operator different than (2m e ) 1 . This
proves the right-hand side of Eq. (3) on condition that a constant multiplier of

4π2e2/ħ2chas been omitted in Eqs. (6) and (7).

3. Electron transitions between quantum states in crystals
and the problem of the boundary conditions

Expressions (1)—(6) represent essentially the one-electron approximation of
the absorption problem for atoms. This approximation is very useful also for solids,
where the amount of electrons is usually a huge number. In fact, the fundamentals
of the theory of solids, especially the band theory, are based on the one-electron
approximation.

However, the problem of the boundary conditions is essential in considering
the optical transitions in solids. In the most part of considered cases the electrons
are described by the Bloch wave functions which, in the case of a reduced influence
of the crystal core, can be represented by the free-electron plane waves exp(ik• r). If
electrons forming a gas in a metal sample are illuminated by the electromagnetic
radiation, the photon momenta 7q, which can be acquired by electrons, should
satisfy the relation

here k and k' represent the electron states respectively before and after the photon
absorption. Since the q vector is usually (see e.g. [14]) by several orders of its
magnitude less than the dimensions of the Brillouin zone, we have practically

and obtain the conservation of the k vector represented by

This implies that there is no direct electron transition due to the electromag-
netic absorption which should take place only between different electron bands. In
consequence, in the Bloch picture, any of the electron transitions between energy
levels in a metal should be accompanied by the corresponding input of the photon
energy specified by the energy difference between two electron bands. In effect, for
a perfect metal, represented by a constant core potential in the field of which the
electrons move, there is practically no possibility of the transition of an individual
electron due to the photon absorption.

A fully different situation exists when the metal is described by the standing
free-electron wave functions. If we take a one-dimensional metal of length L, the
wave functions are given by

where the sinus form of the wave function comes from the boundary conditions
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satisfied for any quantum state q). Furthermore, if the electric potential field is
directed along the metal, the matrix element coupling state !q) with some state |i)
[see Eq. (1)] becomes

Expression (13) does not vanish for any pair of states q) and li) having different
parities, including also the neighbouring indices q and i. A similar result will be
applied to a three-dimensional electron gas. In this case the matrix elements will be
equal to (13) on condition that the x, y-dependent part of the wave function is the
same for states |q) and |i). In this way electron transitions can take place evidently
between the states within the band providing us with a totally different pattern
of the electron transitions than that obtained in the case of the (approximate)
treatment of the Bloch states: In fact, all possible electron transitions within the
band should be taken into account in the course of the derivation of the TRK sum
rule for that band. This is done in Sec. 5. Evidently, if the dipole transitions (1)
would be zero, the same result would be applied to the sum expression given in
Eq. (3).

A clear presentation of the idea we have in mind can be done by extending
the outline of the optical properties of metals given in Ref. [15]. The well-known
dependence of the dielectric function of a free-electron metal on the frequency ω
is

where N is the electron number in the unit of volume, the oscillator strength fqi
is defined in Eq. (3), ω qi is the frequency given in Eq. (2) where now |q) and
|i) refer to the free-electron states in a metal. A usual approximation for a real
metal is that ω qi for transitions between | q) and |i), which give an important
contribution to the sum presented in Eq. (14), are very small against ω, so w q i can
be neglected. Another step towards a real metal is that the free-electron mass m e
should be replaced in Eqs. (3) and (14) by an effective mass m en, an approximation
which holds mainly for the nearly free-electron states, especially at the band limits.
When ε(ω) is put equal to zero, Eq. (14) leads to the well-known expression for
the plasmon frequency ω = ω(p) on condition that the sum rule given in Eq. (3)
is satisfied also in the case of m e replaced by melf. Our point developed in the
present paper is that not solely m e should be changed into m en. at the band limit,
but a modification should concern also the sum rule representing the first moment
of the spectral distribution function, namely

itself [see (3)], here we have put e = 1 for the sake of convenience. A very charac-
teristic point in Eq. (3), or (3a), is that the final result for the sum of the oscillator
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strengths given there does not depend on the initial state |i). On the other hand,
the modification of Eq'. (3a) given below shows us that the corrective terms enter-
ing an extended formula for Eq. (3), or (3a), depend on the quantum parameter
κ labelling the initial state |i) (Sec. 5).

4. Band methods suitable to calculation of the sum rules

Among many methods which have been elaborated for calculating the band
structure of solids one may deserve some special interest. This is the well-known
LCAO method developed first by Bloch [16]. Our first aim is to examine the
Thomas-Reiche-Kuhn rule within the framework of the LCAO method.

In this method the electron wave functions are combined from the atomic
wave functions centred about the individual atoms. An especially simple descrip-
tion of the electron states is obtained when the LCAO approximation is limited to
a single band of states based on one kind of the atomic wave functions φ(r- Rv),
each φ being centred about one atomic site Rv and the atoms are distributed in
a regular lattice.

In a more accurate approach to the LCAO band theory we have the atomic
orbitals φ(r- Rv) replaced by the Wannier functions α(r- Rv) which are centred
about any site Rv. In total, the one-electron wave function of a perfect crystal
based on a single atomic state is

where NΑ is the normalization coefficient.
Expressions for the coefficients A(Rv) of a perfect crystal depend on the

boundary conditions imposed on the crystal wave functions (15). For the choice
of the cyclic, or Born—von Karman, boundary conditions, the coefficient8 Α(Ή)
can be represented by a simple function of Rv, namely

here k is the wave vector labelling the electron states distributed within the Bril-
louin zone. Difficulties connected with the calculation of the matrix element with
the aid of Eqs. (15) and (16) are similar to those met for the matrix elements be-
tween the Bloch functions discussed at the end of Sec. 3. However, the coefficient
functions other than those of the form given in Eq. (16) can be derived, they are
useful, for example, in the case when the crystal wave functions vanish at some
definite surface representing the boundary of a finite crystal block. Assuming that
φ(r - Rv) have a spherical symmetry about any R, so

is the atomic orbital of kind s, the coefficient function Α(Rv) should transform
according to the symmetry species compatible with the symmetry properties pos-
sessed by the crystal block. For example, for a block having the shape of a sphere
and its centre is located in one of the crystal sites, the Α(Rv) should transform
according to the symmetry species of the crystal point group, on condition that
the crystal transforms according to a symmorphic space group, so the crystal point
group is a subgroup of the space group: In a special case of the cubic symmetry of
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the crystal point group taken as an example, the Α(Rv) are the basis functions of
the irreducible symmetry representations of a cube. In result, the quantum states
classified according to the point-group symmetry species are represented by Α(Rv)
labelled by different parameters than the components of the vector k.

• 	 If HC is an effective one-electron Hamiltonian acting on the crystal electrons
which are described by Eqs. (15) and (16), the electron energy becomes

The superscript B in the last term in Eq. (18) denotes the Bloch energy. Evidently,
the second expression in Eq. (18) holds only for a special choice of Α(Rv) done
according to formula (16).

The simple and very well known expressions for εB (k) are obtained when
the overlap between the atomic orbitals as well as the constant components in
εΒ (k) are neglected and only an interaction between orbitals belonging to the
nearest atomic neighbours is considered in the energy expression (18). This is
the so-called tight-binding approximation of the LCAO method. For example,
taking into account solely the' orbitals having a spherical symmetry we obtain for
simple-cubic (sc), face-centred cubic (fcc), and body-centred cubic (bcc) lattice,
respectively (see e.g. [17])

The length of the lattice parameter has been put equal to 1 and parameters β latt
are the so-called interaction integrals between the nearest atomic neighbours char-
acteristic of a given lattice [17].

An important point about Eq. (18) is that 

ε

B (k) can be transformed into
an operator formula by the .substitution 	.

and similar substitutions can be done for k y and k2 , so we obtain as the energy
operator

for electrons moving in a perfect crystal described by the LCAO wave functions;
ρχ,ρ Υ ,ρ Z are the momentum operators defined in the space of the components
X, Y, Z of the lattice site position vector R; for the sake of brevity we have put
the Planck constant ħ = 1,

The operator (21), introduced by Wannier and Slater [18-20], is especially
useful when some perturbation of a perfect crystal lattice, done by a certain ex-
ternal potential, is considered. Another application of W is to calculate the eigen-
functions Α(R) and the corresponding eigenenergies EC according to the formula

in the case when the boundary conditions of the 'crystal problem are different
than those imposed by Born and von Karman. In fact, the differential operator W
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entering Eq. (22) is not limited by the boundary conditions, because W is based
on the continuity equation when this equation is applied to the calculation of the
coefficient values in different lattice sites beginning with the value of Α(R) taken

• at some chosen site [21]. Details of the calculations of  Α(11) and EC done, for
example, for the electron wave functions in cubic lattices in the case when these
functions satisfy the standing-like boundary conditions, are given in Refs. [21-26].
In the present paper we apply W and A(Rv) to the calculation of the TRK sum
rule for the band electrons.

Simple rules for the calculation of the matrix elements in the case of a per-
turbed W have been developed in Ref. [27]. According to these rules any operator
in the ordinary space r of position coordinates, introduced as a perturbation of
the original crystal Hamiltonian H° , should be transformed into the correspond-
ing position coordinate of the space of the lattice vector R when this operator
is introduced as a perturbation of W. Hence, the original perturbation f(r) of
Hc becomes a perturbation f(R) of W. In the case of the response function for
photoabsorption done by electrons in a crystal, the energy components Εcg and Ε
entering the difference

instead of ħω q i in Eq. (4), can be represented as the eigenvalues of W according to
Eq. (22). Consequently, the component z of the polarization vector in the ordinary
space should be replaced by the component Z in the space of the lattice vector.
The closure property for the eigenstates of W leads to the following formula for the
photoabsorption cross-section integrated over the whole spectrum of frequencies ω

This formula leads us to the TRK sum rule for electron transitions in crystal
lattices; see Sec. 5. An important point is here, however, the problem of hermic-
ity of the considered operators. The property of hermicity may depend not solely
on the formula of the applied operators, but also on the form of the considered
wave functions and the boundary conditions. The problem can be sound espe-
cially for solids where the Bloch wave functions for the crystal electrons are in a
common use. In the case of the Bloch wave functions already an operator equal
to a power of the coordinate variable, say z, is not a strictly Hermitian oper-
ator, see e.g. [28]. An explicit calculation performed on one-dimensional Bloch
functions shows that the closure property is not satisfied already for the fourth
power of the coordinate operator [29]. A better work of the closure property for
the coordinate-dependent operators is obtained in the case of the standing-like
free-electron wave functions taken instead of the Bloch wave functions. But also
in the case of the standing-like wave functions the closure property ceases to be sat-
isfied when the coordinate-dependent operators are combined with the momentum
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operators and the total power exponent of the combined operator is larger than 3,
see [29]. Difficulties in construction of the high-order Hermitian operators for solids
are well known [30, 31]. In fact, any operator can be strictly Hermitian only when
the considered area is extended to infinity and the wave functions are represented
by the appropriate class of the functions. This condition is fulfilled mainly for
atoms, but usually it is not satisfied for solids. Hence, any result obtained with
the use of the closure property for the solid states should be considered only as an
approximate one, especially in the case of the operators combining high powers of
momentum and position coordinates. Consequently, in our calculations we refrain
from the moments of the strength distribution function (4) higher than the second
one, see Sec. 6. The importance of the boundary conditions in connection with the
TRI{ sum rule has been pointed out in Ref. [32].

5. Thomas-Reiche-Kuhn sum rule for the band electrons

The commutation properties of the operator W give [27, 33, 34]

Neglecting the constant components in £B(k) and W and putting the length of the
lattice parameter equal to unity, we obtain the following power expansions of W:

for the sc, fcc and bcc lattice, respectively, because of Eqs. (19)-(19b), (20)
and (21).

If we consider energies near the band limit represented by small kx , ky and
k,z and retain only the second-order terms in the expansions of cosines entering
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Eqs. (19)—(19b), the k-dependent part of the energy £B (k) is proportional to k 2

just as in the case of free electrons. Hence, we may treat these electrons as free
with the following effective masses:

for the Sc, fcc, and bcc lattice, respectively. From Eqs. (28)-(28b) and (29) we
obtain for the same lattices

Operators (30)-(30b) can be now substituted between the bra expressions
representing the standing-like coefficient functions for cubic lattices, and similar
ket expressions, viz.

Here Γ labels the irreducible representation of the crystal point group,  μ labels
the row of that representation and λ is the index labelling the solution of the
eigenequation (22) obtained for a given Γ and μ, the quantum parameter κ is
obtained from the boundary condition.

In the case considered in the paper it is sufficient to take only one irreducible
representation, viz. Γ = Γι , to calculations. This is so because the situation within
a perfect crystal repeats itself in each lattice site, on condition that the crystal sites
are located far enough from the crystal boundary. In particular, a site located at
the origin Ο of the coordinate system can be taken to calculations as representing
other sites of a crystal. In this case solutions (31) belonging only to Γ 1 are of
importance because solely the solutions of this kind do not vanish at Ο (see [21, 22]
and Sec. 7). We arrive at the expansions
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for the Sc, fcc and bcc lattice, respectively; O is the angle between axis Z and
vector R. The normalization property of ΑΓ1,γ(k, R) has been taken into account
in the calculations together with the weighted averaging process over the angle O,
namely

For small κ the results (32)-(32b) depend solely on n 2 . This is so because
any coefficient function given in the expression (31) is also an eigenfunction of the
Laplacian operator with the eigenvalue equal to κ2 , see [21-25]. The dependence
on λ of the expressions (32)-(32b) can be exhibited when higher powers of κ than
the second one are taken into account. This dependence is connected with the
fact that any of the expressions AΓ1,γ(κ , .R) has its eigenvalue ΕΓ1,λ(κ), so for a
large enough κ we have different energies labelled by λ, see [21, 22] and Sec. 6.
The moments m 1 for the band electrons [see (32)—(32b)] differ from the nearly-free
electron expression

by their dependence on the quantum parameter κ, the superscript latt in Eq. (27a)
is an abbreviation of sc, fcc and bcc.

Let us note that expressions similar to (32)-(32b) can be deduced also on the
basis of the LCAO wave functions having the itinerant coefficient functions (16).
However, the calculation based on the standing-like coefficient functions (31) allows
us to avoid the problem of divergence of the matrix elements for the electric field
extended over the Bloch elementary domain (see e.g. [31]) as well as, to some
degree, the problem of the lack of hermicity, see the end of Sec. 4. The expressions
(32)—(32b) depend on the radius Rd of the crystal block by the intermediate of
the quantum parameter

for the states building up the electron density at the site Ο (see e.g. [22]), n is a
positive integer number.
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5.1. Plasmon problem in transition metals and semiconductors

In the flrst step, let us note that the results obtained in Sec. 5 explain why no
plasmon absorption can occur for tightly-bound electrons which are typical of, for
example, transition metals. By averaging the operator entering the expressions (27)
and (30)-(30b) over the Bloch coefficient function, i.e.,

we obtain

For a given constant energy, say the Fermi energy, we have, in general very different
values of kx , ky and kz for. that energy because of the well-known anisotropy of
the Fermi surface for the tightly-bound electrons. This property provides us with
an oscillatory character of the expressions (34)-(34b) in the k space, so its average
calculated over the values of k belonging to the Fermi surface should cancel. This
situation should be repeated also, for example, for the tighthly-bound d electrons
which can provide us with similar trigonometric expressions for m1 as those given
in Eqs. (34)-(34b), see e.g. [35]. The states belonging to anisotropic surfaces of a
constant energy predominate in the band of states of a transition metal, so the
whole band is, in principle, not suitable to produce a plasmon.

A different situation may occur, however, for semiconductors having a con-
siderable amount of carriers present in the conduction band, for example, due
to the effect of donors. Usually, the concentration of electron carriers is much
smaller than a concentration of electrons in a metal band, because the filling of
the conduction band is small. However, these carriers can behave similarly to the
tightly-bound electrons in a metal band near the band limit. This makes possible
to apply the formulae (3), (14) and next (24) and (32)—(32b) also for the carriers,
on condition that a constant multiplying κ 2 is replaced by another constant, char-
acteristic of the band of a given semiconductor. Usually, such a constant does not
exceed unity. Since the concentration of carriers is smaller by several orders than
that of electrons, the size of K occupied within a conduction band should be much
smaller than 1. Therefore, approximately, the correction to TRI{ rule íntroduced in
the expressions (32)—(32b) should be also small. Recently, a conventional plasmon
dispersion formula has been successfully applied to n-doped GaAs semiconductors
having different carrier densities [36].

6. Other moments than m1 calculated for cubic lattices

Beyond the moment m 1 calculated in Eq. (27) as well as in Eqs. (32)-(32b),
also other moments of the spectral density can be considered, see e.g. [8]. Rather
recently the moments other than m 1 have found their applications especially in
the studies of the nuclear matter [12, 13]. Because of inaccuracies connected with
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the application of the closure property to the crystal states (see the end of Sec. 3),
the calculation of the higher moments done in the present paper is limited solely
to m2 , but the moments having negative indices are also considered.

The moment m, of the spectral density is

We have put here e = 1 for the electron charge, the curly brackets in Eq. (35)
denote the anticommutator. Because of Eq. (25) we obtain

for the sc lattice and similar expressions can be obtained for the fcc and bcc
lattices, respectively. When only the lowest powers of the momentum operator in
Eq. (36) and similar operators for the fcc and bcc lattices as well as the coefficient
function (31i for Γ = Γ, are taken into account, we obtain from (35)

In the calculation of the expressions (37)-(37b) the averaging process over the
angle Θ [see Eqs. (32) and (32a)] has been taken into account.

The inverse energy-weighted sum rules may have interesting applications
(see [8] and Sec. 6.1 of the present paper), so we consider also the moments mτ
having a negative τ. For τ = -1, -2, ... we obtain the following equations:

The constant e has been recovered in Eqs. (38) and (38a).
A convenient approach to Eqs. (38), (38a), etc. for solids can be done in the

framework of the free-electron approximation. In this approximation the standing
electron wave functions are

since we assume that the electrons are enclosed in a spherical potential cavity
having a finite radius Rd; in consequence, coordinate z in Eqs. (38) and (38a),
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as well as coordinate r in Eq. (39), represent, respectively, the polarization vector
and position coordinate in the ordinary space. The quantum parameters Kn l en-
tering the argument of the spherical Bessel functions jl in Eq. (39) are obtained
from the requirement of vanishing of Eq. (39) for any n and  l. The functions

Plm(cosV)exp (imφ) represent spherical harmonics,Nnlmis the normalization co-
efficient. A rather recent discussion of the problem of particles moving in a spher-
ical cavity is given in Ref. [37].

According to the density-functional approach, the situation in the whole
volume of the perfect metal can be analyzed in only one metal point, because —
due to a large number of electrons present in a metal — the electron density in
one point, say r = 0, chosen within the metal sample repeats itself over the whole
metal volume. This is so on condition that we neglect the regions close to the metal
boundary as well as the influence of the crystal core. In this way the perturbation
calculation can be limited to the wave functions

because solely the wave functions (40) are building up the electron density in a
chosen metal point

and only the wave functions (41) can be coupled with the wave functions (40) by
the dipole polarization operator

for a thorough discussion of the perturbation approach outlined above see Ref. [38].
The normalization coefficients entering (40) and (41) are

The square value of the matrix element between Eqs. (40), (41) and (43) entering
the nominator of m- 1 is 	 .

whereas the energy expression entering the denominator of m-1 is
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see [39] for a discussion of the expression (47). Since in the predominant number
of the electron states considered in a metal the indices n and n' are large numbers
(let us consider, e.g., the electron excitations, near the Fermi level), the third
component within the square brackets in the expression (47) can be neglected, so

The formulae obtained above imply that an important contribution to m- 1 ,
m -2 , etc., calculated for a chosen n labelling the state (40) is given already by a
few components of each sum entering (38) and (38a. which are taken for

let us note that here the indices n' > n, as well as n' < n, should be considered.
Beginning with n' = n and taking into account n » 1 we obtain from Eqs. (44)
and (45) the following sum for m_ 1 :

Further. calculations of m - τ , where τ > 2, can be readily performed. Both moments
m-1 and m_2 contain n 2 in their denominators, so these moments are inversely
proportional to the square of the quantum parameter

because of Eq. (46). Equation (51) holds because the energy obtained from the
standing free-electron state represents the same function of the quantum parame-
ters κn0 as it is in the case of the dependence of the Bloch free-electron energy on
the wave vector value |k|, see [22, 38].

6.1. Relations between the moments of the strength distribution function
belonging to different orders

Traini [8] has developed several relations concerning the moments of the
strength distribution function for the case of the hydrogen atom. In the present sec-
tion we examine these rules in the case of the moments of the strength distribution
function calculated for electrons moving in a large spherical cavity representing
the metal block.

The first relation comes from the maximum condition imposed for the fol-
lowing combination of the moments:
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For the maximum value of 
β which is obtained for the expression (52) it should

be [81

While examining the relation (53) we shall take into account solely the free-electron
states enclosed in a spherical cavity. In this domain the electron behaviour is
similar to that of free particles, so we can put

Then, following the way demonstrated in Eqs. (7) and (27), the moment ml be-
comes

In the next step, from the standing-like approximation for the wave functions, we
obtain

Here the spherical coordinates r = r(r, V, φ) and the approximation

have been applied for the calculations done with the aid of the free-electron wave
functions extended within a spherical potential box having the radius Rd. The
averaging process in the expression (57) has been performed over a large interval
of the variable r. A substitution of (49), (55) and (56) into the relation (53) gives
the requirement

which is satisfied solely for small n, viz. n = 1, 2, 3 and 4.
Another relation which is fulfilled for the moments, namely

For free electrons in a metal expression

represents the energy difference between two neighbouring free-electron levels. The
relation (59a) gives the requirement
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This relation is satisfied for n > 50, so it holds for the overwhelming part of the
free-electron states in a metal, if we note that the Fermi level of a macroscopic
metal is at about n = 10 8 . The relation (59a) can be modifled into

is sought to be satisfied, instead of (59), for some extremal value of ε, see [8].
According to the formula (35a) we have for free electrons

where instead of the operator W for the electron in a lattice the Hamiltonian He
of Eq. (54) has been applied in the first step of Eq. (63). In effect, the ratio m 2/m1
is a number proportional to n 2 , see Table. Evidently, for large n the expression
m2/m 1 predominates over ħω 10 given in Eq. (60). Similarly, ħω10 predominates .

over the expression m1/m0 in Table giving

for large n. From the relation (64) we obtain the following estimate of the corrective
term within the square brackets entering the inequality (62):

so the relation (62) cannot be satisfied for any large n. It can be checked that
the formula (62) cannot be satisfied also for small positive integer n labelling the
free-electron states.

The sequence of the ratios between the moments considered for the hydrogen
atom can Κι arranged as follows  [8]:

We represent this sequence calculated for the free-electron states enclosed in a
spherical cavity in Table. Only the first and the third relation presented in the
formula (66) are satisfied for almost all free-electron states n, but none of the
states n can satisfy the central (second) relation entering the formula (66).
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7. Discussion of results obtained in Sec. 6

The mi-sum rules obtained in the present paper for cubic lattices (Sec. 5)
can be developed also for other lattices. The intermediate situations between free
electrons and tightly-bound electrons can be equally considered. Any of such sit-
uations, representing a definite strength of the atomic interaction in a lattice, is
characterized by a different energy operator W acting on the LCAO coefficient
functions.

A calculation of the moments m- τ having negative indices (τ > 0) has
been done for free electrons (see Sec. 6) and a question may arise how the crystal
lattice can influence the free-electron results obtained for m_τ. An answer can be
attained if the free-electron states are replaced by the nearly free-electron states in
cubic lattices. In the second case the standing LCAO-wave functions representing
a band of nearly-free s-electrons moving in the field of a cubic crystal lattice are
applied. For nearly-free electrons, as well as electrons close to the band limit, the
coefficient functions do not depend on the kind of the cubic lattice [21]; we assumed
here that the situation at the band limit coincides with the electron states having
small values of the quantum parameter κ. The volume of the lattice is limited to
a spherical block the centre of which is located in one of the sites of the crystal
lattice.

In general, the diagonalization procedure is applied to the Wannier-Slater
energy eigenequation (22) and this is done for any cubic lattice. The procedure
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splits the original free-electron band of states into subbands labelled by the index
λ and the index Γ labels the irreducible representation of the cubic point group,
see Eq. (31). The energy expression calculated for each subband λ depends on the
quantum parameter κ in the following way:

the superscript Γ and λ have been omitted for a 0 and α1 since these coefficients
do not depend on Γ and λ. The corresponding eigenfunctions of Eq. (22) are

where (Η)Γl,t are the lattice (cubic) harmonics belonging to a certain specified irre-
ducible representation Γ whereas the index μ labels the rows of Γ. The coefficients
c Γμλl,tλ in Eq. (68), as well as α

Γ
,λiin Eq. (67), are obtained in the course of the

diagonalization process done for a large crystal block. Since for a macroscopic crys-
tal block a difference between two neighbouring values of the quantum parameter
κ can be a very small number, a small energy difference entering the denominator
of m-1 and m- 2 can be attained mainly for two neighbouring n, say n' and κ",
entering the same Ε Γi,λ (κ). In this way the energy difference coming from the elec-
tron states belonging to different λ can be neglected and the expression entering
the denominator of m_ 1 and m_2 is reduced solely to the difference

which is an expression typical of the free-electron states. This result holds for all
Γ and λ. Moreover, the coefficient functions (68) having different λ belong, for a
given energy, to evidently different n, so these functions strongly interfere in the
matrix element

calculated for Γi Γj . An exception is the situation considered at the band limit
where n' κ" holds also for the case of λ' Ο λ", and this situation is chosen in a
further examination.

First let us note that the direct product between representations Γ; , Γ, and
representation Γ15 to which belongs the variable Z entering the formula (70) should
contain the total-symmetry representation Γ1 , otherwise the matrix element (70)
vanishes, for the transformation properties of the basis functions calculated for
different Γi see e.g. [40, 41]. If the lattice site

is chosen as a typical site of all lattice sites of the crystal block, then solely the
matrix elements coming from

or vice versa, should be considered in the formula (70). In the case of the re-
lations (72) the index μ for the representation Γ1 does not enter into play (see
e.g. [40]) and μj = Z because solely this row index can provide us with a non-van-
ishing result in the formula (70).
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Α sum of the matrix elements (70) done for different sets of λ' and λ" has
been performed in Ref. [42], where also the standing-like LCAO coefficient func-
tions of the s electrons in cubic lattices have been presented; cf. here also [21-25].
For the band limit, the coefficient functions A Γi,μi,λ' (κ', R) and ΑΓj,μj,λ" (κ", R)
degenerate to expressions corresponding to the small values of parameters K' and
K", Then the following relation is satisfied for small n' Kn0 and K" Kn'10, so
this relation is practically the same for all kinds of cubic lattices

Ι.

In Eqs. (74), (74a) and (76), (76a) the asymptotic formulae valid at large R are
taken into account for the spherical Bessel functions j/ belonging to different 1;
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see [39]. For even I these formulae become equal to the expression of j0 (κ', R) and
for odd 1 the asymptotic formulae become equal to the asymptotic expression of
j(κ", R) on condition that a proper sign is taken before j0(κ', R) [see (40)] and
before the asymptotic form of j1 (κ" , R) which becomes

[see Eq. (41)]; in Eq. (40) the parameter κ' is replaced by κ n 0 and in the relations
(41) and (77) κ" is replaced by κn'1. Α notation characteristic of the symmetry
species of the cubic point group has been introduced into Eqs. (76) and (76a); the
volume Va occupied by a single atom in the lattice has been put equal to 1.

The result obtained in Eq. (75) — together with that given in the rela-
tion (69) — implies that the free-electron calculation of the moments m- 1 , m- 2, ...
are justified also for electrons moving in the field of the solid lattice on condition
that the quantum parameters κ' and κ" are small, so they correspond to the values
| k' | and k" | of the wave vectors being not far from the centre of the first Brillouin
zone, see [22].
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