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A local pseudopotential in the second-order perturbation theory is used
to study the electron dispersion relation, the Fermi energy and deviation in
the Fermi energy from free electron value for the liquid alkali metals. The
influence of the five different forms of the local field correction functions on
the aforesaid electronic properties is examined explicitly, which reflects the
varying effects of screening. The depth of the first negative hump in the
electron dispersion curves of the liquid alkali metals increases in the order
Na, K, Rb, Cs.
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1. Ihtroduction

The pseudopotential based investigation of the Fermi surface and its distor-
tion from free-electron value for the metals in the solid phase are quite often and
well recognized [1, 2]. However, the attempts of studying the Fermi energy and its
deviation from the free electron value for liquid metals are very rare and not ex-
haustive [3, 4]. For liquid metals, it was observed that there exist deviations in the
electron dispersion from the free electron value. It was also found that the maxi-
mum deviation takes place in the vicinity of the first spherical Brillouin zone. This
region lies nearly at half of the distance of the first peak in the structure factor.
Srivastava [3] has reported the electron dispersion and the Fermi energy of some
simple liquid metals. He has also reported the deviation in the Fermi energy from
the free electron value at the Fermi level for the liquid alkali metals [4]. Present
article deals with the computation of the electron dispersion, Fermi energy and
deviation in the Fermi energy of liquid alkali metals with the aim to explore the
use of our well established empirical form of the local pseudopotential [1, 2, 5-7]
for understanding the behavior of these properties. The local pseudopotential used
to explain the electron-ion interaction in liquid metals is of the form (in Rydberg
units) [1, 2, 5-7]:
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Here Z is the valency, £290 — the atomic volume, ¢ — the wave vector and 7o —
the parameter of the model potential. Since the parameter of the potential de-
termines the size of the effective core region and as soon as the size will change,
the interaction and hence the pseudopotential will change. Thus the determina-
tion of the parameter bears prime importance. Instead of fitting the parameter
of the model potential with any observed physical property, the well recognized
method [1, 2, 5-7] of ¢ = ¢o value is used to determine the parameter of the po-
tential. The requirement to determine the parameter r. from g0 value leads to the
condition ggr. = 1.0301 [1, 2, 5-7].

The choice of pseudopotential form factor is certainly an important con-
sideration in the study of metallic properties and its actual form is much more
sensitive to the choice of the dielectric function of the electron gas. Hence, the
purpose of this paper is not only to generate the electron dispersion curves, Fermi
energy, and ‘deviation in the Fermi energy from its free electronic value, but also
to see the influence of various local-field correction functions in the screening. For
this, we incorporated five different forms of the exchange and correlation func-
tions, viz. Hartree (H) (8], Hubbard-Sham (HS) [9], Vashishta—Singwi (VS) [10],
Taylor (T) [11] and Ichimaru-Utsumi (IU) [12], with special attention to see the
effect of IU [12] function, since this function is not exhaustively used in the pseu-
dopotential calculations so far. IU [12] screening function reproduces accurately
the Monte Carlo results as well as-those of the microscopic calculations. It also
satisfies self-consistency conditions in the compressibility sum rule and short-range
correlations. A notable feature in this function is its involvement of the logarithmic
singularity at ¢ = 2kp and the accompanying peak at ¢ ~ 1.94kp.

2. Electronic structure

_ In the second-order perturbation theory, involving pseudopotential, the elec-
tronic structure of a liquid metal is given as [3, 4]:

E(k) = Eo(k) + E1(k) + Ea(k), (2)
where |
Eo(k) = K*k?/2m, (3)
Er(k) = N(kfw(g)[k), ; (4)
and
2m ~— S(¢)S* (¢)|w(q)|?
B =3 T Tl ®)

Using the liquid structure factor a(g) = N|S(q)|?, we rewrite Eq. (2) in the follow-
ing form [3, 4]:

Zk.z a(@w(@)?  a(q)lw(q)|?
B() = 5+ 23 Zkz(i)l,k(f)q'p- (")'qz(”' ) o

For liquid analog this equation is restructured as [3]: .
E(k) = h*k?/2m + A(k) — A(0), ‘ (7
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with
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Here kr, Er, a(g) and w(q) are the Fermi momentum, Fermi energy, static structure
factor, and pseudopotential form factor, respectlvely From Eq. (7), the electron
dlspersmn AE(k) for the liquid metals is given as

AE(k) = A(kr) — A(0). _ ' ' (10)

At the Fermi level, k = kp, Egs. (7) to (10) take the value [3, 4]:

Ep(kr) = K2k /2m + A(kg) — A(0), - (11)
with 3Z> - _—

alke) = g [ el (@ein 3 A4 g (12)
and 2z akp

A0 = 5o / alg)u?(g)ds. (13)

Hence the deviation in the Fermi energy AEF from free electron value at the Fermi
level is given by

AEp = Akr) — A(0). - (14)

3. Results and discussion

From the set of Egs. (7) to (10), we computed the electron dispersion in liquid

alkali metals which are shown in Figs. 1-5. Theoretical structure factor evaluated -

_by using Percus—Yevick hard-core (hard-sphere) approximation [13] was used in the
calculations. Figures 1-5 reflect that the inclusion of various local-field corrections

influence strongly the outcome. Except for Na, the first negative maxima. in the"

electron dispersion curves due to HS [9], VS [10], and IU [12] screening function fall
between those of due to H [8] and T [11] screening function. While in Na, the first
negative maxima due to H [8], HS [9], and VS [10] local field correction are lying
between those obtained by IU [12] and T [11] local field correction functions. It is

found that liquid Cs has the largest negative hump in the electron dispersion among -

all alkalis. The depth of the negative hump in the electron dispersion of liquid alkali
metals increases in the order Na, K, Rb, and Cs. This is a clear demonstration
of the fact that the strength of the potential increases as we move from sodium
to cesium. However, the Li shows larger negative hump than Na, K, and Rb.
This could be due to nen-orthogonalization of p-component of the conduction
electrons. The oscillatory behavior in the AE(k) — k curves indicates that the
electron dispersion may have an important effect on the electronic properties of
liquid metals.
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Fig. 1. Electron dispersion curves for liquid Li.
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Fig. 3. Electron dispersion curves.for liquid K.
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Fig. 5. Electron dispersion curves for liquid Cs.

Fermi energy (—Er in 1072 erg) for liquid alkali metals.
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TABLE

Metal Present work with different screening

H[8] | HS [9]

VS [10] [ T (1] [IU [12]

Other results [3]

Li 7.1149 | 7.0961 | 7.0805 | 7.0662 | 7.0633 | 7.2965

Na | 4.7388 | 4.7199 | 4.7057 | 4.7008 | 4.6934 | 5.0477

5.0566

K 3.3493 | 3.3404 | 3.3328 | 3.3306 | 3.3270 | 3.3030

Rb | 2.7919 | 2.7802

Cs 2.2119 | 2.1977

3.2811

2.7699 | 2.7668 | 2.7620 | 2.8390
2.8662

2.1783 | 2.1592 | 2.1582. | 2.4294
2.4396

7.2530

6.9623
6.8584

4.9283
4.9170

3.2184
3.1559

2.7448

2.7703

2.3488
2.3559

7.0861
7.0021

4.9578
4.9544

3.2081
3.1701

2.7697

2.7755

2.3293
2.3354

7.4199
7.3989

5.0879
5.0986

3.3105
3.2922

2.8755
2.9007

2.4617
2.4724
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Equations (11) to (14) are employed to calculate the Fermi energy and the
deviation in the Fermi energy from the free electron value at the Fermi level. The
calculated values of the Fermi energy E for the liguid alkali metals are listed in
Table along with other such findings [3] which fully supports the present values
for all the alkali metals. It is to be noted that different forms of the local-field
correction functions [8-12] to incorporate the exchange and correlation effects in
the screening reduces the value of Fermi energy in comparison with that obtained
by static Hartree dielectric function [8] (which does not include any exchange or
correlation effects). Figure 6 shows the trend of the evaluated change in the Fermi
energy Ef from free-electron value versus atomic volume {2, for the liquid alkalis.
The effect of the various local-field correction function is distinct and more trans-
parent on AEp. Among the alkali metals, minimum deviation in the Fermi energy
at the Fermi level is obtained for.liquid potassium and the maximum deviation in
the Fermi energy at the Fermi level is obtained for liquid lithium.
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Fig. 6. Deviation in the Fermi energy versus atomic volume.

From the present investigation we found that IU [12] local field correction
function produces satisfactory results and behaves equally good in comparison
to other screening functions [8-11] employed in the present work. We conclude
with stating that in the pseudopotential based calculations one has to employ the
IU [12] screening function to test the validity and usefulness of the model potential.
Finally, we note that similar work could be done for other polyvalent liquid metals
to arrive at confirm conclusion. Such work is under progress and reported in due
course of time.
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