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SURFACE AND THIN FILM MAGNETIZATION OF
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The independent random walk method (which is equivalent to the nonin-
teracting spin wave method) with no further approximations was used to cal-
culate the low t ;mperature expansion of: (i) the local mean spin values of an
isotropic Heisenberg ferromagnet for semi-infinite crystal and (ii) the sponta-
neous magnetization of an anisotropic Ieisenberg ferromagnet for monolayer
and double layer. The full low temperature expansion starting with Τ312 term
was obtained for the semi-infinite Heisenberg ferromagnet and it was shown
that the spontaneous magnetization for thin films of anisotropic Heisenberg
ferromagnets can exhibit a quasi-linear behaviour in certain temperature
region related to the magnitude of the anisotropy.

PACS numbers: 75.70.Ak, 75.30.Pd

1. Introduction

Magnetic thin films and multilayers exhibit various interesting properties
different from bulk ferromagnets [1]. The experimental data on the behaviour of
the magnetization of some overlayers in the low temperature region show, for
example, the appearance of a linear term in the low temperature expansion of
the surface magnetization of the ferromagnets [2]. The theory of the influence
of the surface on the magnetization of the isotropic Heisenberg ferromagnet [3]
predicts only the change of the Τ3/2 term (where Τ is the absolute temperature)
with the prefactor of the term twice as large as the bulk one. The analysis of
the spin-wave spectra for the Heisenberg ferromagnet with exchange softened at
the surface or in overlayers leads to the conclusion that the magnetization of
the systems obeys with a good approximation the Τ3/2 law [4, 5] while the Τ3/2
prefactor can vary [5] in a wide region. The enhancement of the exchange in the
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surface layer or the surface spin also affects the surface magnetization [5] and its
temperature expansion for J|| = 3J (where Jand J|| are the bulk exchange and
the exchange in the surface layer, respectively) can be considered as a combination
of linear and Τ3/2 dependence.

The magnetization of ultrathin films has been intensively studied both ex-
perimentally and theoretically (see Ref. [6] and [7], respectively, and references
therein). The ferromagnetism absent in two-dimensional isotropic Heisenberg
model [8] can be restored by an arbitrary small anisotropy [9] and a magnetic
monolayer can undergo various phase transitions [7].

The present paper is confined to thermodynamic properties of the Heisenberg
ferromagnets in low temperature region. The investigation of the surface and thin
film magnetization is based on the random walk technique [10]. The method, due
to Kramers [11], consists in the direct calculation of the partition function and
does not make use of Bloch's spin waves. The partition function is calculated in
the basis of the localized states and such a basis is certainly suitable for the crystal
with the surface fúr which the translational symmetry is broken.

The present paper has two objectives. First, it will be demonstrated that the
low temperature expansion of the spin mean deviation for the surface and under-
surface layers of the semi-infinite isotropic Heisenberg ferromagnet can be derived
in the exact manner within the scope of the noninteracting spin-wave approxima-
tion. The coefficient of the first term of the expansion agrees with the one previ-
ously obtained [3]. Then it will be shown that even a small exchange anisotropy
can restore ferromagnetic order (in agreement with Ref. [9]) both in mono- and
double layers. It will be also shown that the spontaneous magnetization for the
thin film anisotropic Heisenberg ferromagnet exhibits the quasi-linear behaviour in
a certain temperature region depending on the magnitude of the anisotropy. The
exchange anisotropy can thus provide an alternative way of explanation of the
quasi-linear behaviour of thin fllm magnetization in the low temperature region.

All calculations have been performed for the, simple cubic (sc) lattice. The
form of the expansion obtained (except for numerical values of coefficients) should
not depend on the symmetry of the lattice and the calculations are simplified by
the fact that the random walk can be decomposed into one-dimensional walks for
the sc lattice.

2. semi -infinite Heisenberg ferromagnet

We assume that we have a cubic lattice with the (001) surface plane which
consists of N lattice sites. The positions of lattice sites belonging to the surface
plane are assumed to be j = (nx , ny , 1) (n() = 0, ±1, ... and the unit of the
distance is the lattice constant). A homogeneous magnetic field directed along
the positive z axis is supposed to be present. First, we consider the system for
which each atom carries a spin S = 1/2, the generalization for an arbitrary S is
straightforward. Neglecting all except nearest-neighbour interactions, the Heisen-
berg ferromagnet can be written in the following form:
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where J is the exchange interaction constant (J > 0), σ^ is the Pauli spin-vector
operator of the j-th atom, μ and H are the magnitudes of the magnetic moment
and the magnetic field, respectively, and the sum in Eq. (2.2) extends over all N f
pairs of adjacent lattice sites and the sum in Eq. (2.3) extends over all N atoms.
The partition function Z can be written in the form [10, 12]

where β = J/kT and k is the Boltzmann constant. The local mean spin value at
the position j we want to calculate is given by the formula

The traces appearing in Eq. (2.5) will be calculated in the representation in
which €j is diagonal. The function in this representation will be fully defined by
stating at which lattice sites there are spins oriented in the direction opposite to
the direction of the magnetic field (such spins will be called minus-spins) and will
be denoted by |m, u), where m is the number of minus-spins and u describes their
configuration. We can write

and

The result is a simple consequence of the fact that (1/2)(1 + σj1σj1 ) is equivalent
to the permutation operator exchanging the spin states of the atoins j 1 and j2 .
The state |m, u0, u l > is the eigenstate obtained from |m, u 0 ) by the displacement
of one of m minus-spins from one lattice point to the adjacent lattice point. u0
is kept in the symbol |m, u 0, u l ) to show the way in which the eigenstate arose.
Am,u is simply the number of pairs of adjacent lattice sites which are either both
occupied or both unoccupied by minus-spins. The approximation introduced in
the calculation for an infinite crystal [10] consists in the assumption that Α can be
calculated as if no two minus-spins ever occupied adjacent lattice points. In this
approximation, for infinite ferromagnet,

The approximation regarding the mutual position of minus-spins, well justified
for the low temperature region, is also introduced in the present calculation. The
effect of the surface is, however, taken into account without any approximations.

The presence of the surface can change the value of Am , u . This value defin-
ing the number of pairs of adjacent lattice sites which are both unoccupied by
minus-spins depends now on the number of minus-spins in the surface layer. In



where n is the number of minus-spins occupying the j-th lattice site. It is also
convenient to introduce the operator nj,u defined by the equation

and the operator rid ut defined in the following way:
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order to account for this effect, let us introduce first, similarly as in Ref. [12], the
operator ii; defined by its effect on the state |m, u) in the following way:

where δ equals 1 when the l-th  minus-spin occupies in the configuration uk the j
lattice site and Ο otherwise. nj, uk and nlj ut are related by the equation

Am,ut can be now replaced with the operator Am,  u t and the latter can be
expressed in terms of the operator r^^ ut

where

fd is the number of dangling bonds at the surface, K is the number of atoms in
the surface layer and the summation in Eq. (2.15) is over all j belonging to the
surface plane. can be also related to the operator nljυk

The calculation of the partition function is now reduced formally to the same
problem as was considered in Ref. [12]. The only difference is that the operators

are used now to find the number of minus-spins in the surface layer instead of
the number of minus-spins in the vicinity of nonmagnetic impurities considered in
Ref. [12]. We can therefore use the result of Ref. [12] to write

where
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The calculation of the partition function for infinite crystals [10, 12] was
reduced at this stage to solving a random walk problem. The simplification made
consisted in the assumption that m minus-spins perform their random walk inde-
pendently and two or more minus-spins may occupy occasionally the same lattice
site. The present calculations are based on the same simplifying assumption. The
calculation for infinite crystals [10] based on the independent random walk approxi-
mation and the approximate calculation of A m give the low temperature expansion
of the spontaneous magnetization with the accuracy up to (and including) T7/2
term.

The calculation of stl (m, u0) differs from the calculation for infinite crys-
tals containing nonmagnetic impurities [12] only in one point. No trajectory of a
minus-spin for the infinite crystal can pass through the surface plane instead of
the lattice sites occupied by nonmagnetic impurities [12]. The probability that a
minus-spin initially at j 1 arrives after 1 steps at j2 not passing through the surface
plane is given by [13, 14]

where Pl is the probability that a minus-spin initially at j1 arrives after 1 steps at
j2 passing or not passing through the surface and j2 ' is the symmetrical site of j 2

with regard to the first fictitious lattice plane parallel to the surface (Eq. (2.20) is
valid provided that the surface plane is a symmetry plane of the crystal).

The probability Ρl(j 1 , j2 ) is easy to calculate [10]

where

the sum in (2.22) is over all adjacent lattice sites with regard to any given lattice
site, p is a vector of the reciprocal lattice, the integration in (2.21) is over the unit
cell of the reciprocal lattice and Ω is its volume.

It can be easily verified that for the sc lattice with the (001) surface plane

The above relation allows us to use all results obtained in Ref. [12]. The
relation (2.16) together with (2.12) shows that the presence σ under the trace
fixes only the positions of minus-spins in the initial configuration and beside that
all calculations can be performed in the same way as in the case of the partition
function. Using the results of Ref. [12] without any further approximation we can
obtain after some rearrangements (see Appendix)

where
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= 1 denotes the surface plane and 1 = 2, 3 ... the successive undersurface planes.
Making use of the following representation of the reciprocal of n!

we finally get for the surface layer (see Appendix)

where

and I0 is the Bessel function.
α being proportional to Τ-1 is large in the low temperature region. The

asymptotic expansion of the Bessel function for a large variable is known and
the asymptotic expansion of the integral B can be obtained following the method
described in Ref. [15]. The low temperature expansion of (Sz,1) can be finally
written in the following form:

where

and ζ is the Riemann zeta function. The expansion (2.34) should be exact up to
the Τ-7/ 2 term. The coefficient b and c can be compared with the coefficient b ∞
and c for the infinite crystal

(in agreement with Ref. [3]) and
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The low temperature expansion of the mean spin deviations thus obtained
is exact within the scope of the noninteracting spin-wave approximation. The
calculation shows that the presence of the surface affects only numerical values
of coefficients of the expansion and does not explain the appearance of a linear
term. However, the presence of the surface can affect the coupling between spins
introducing an anisotropy in the exchange interaction. The spontaneous magneti-
zation of thin films of anisotropic Heisenberg ferromagnets will be considered in
the following section.

3. Thin films of anisotropic Heisenberg ferromagnet

Let us write the Hamiltonian of the anisotropic Heisenberg ferromagnet for
S = 1/2 in the following form:

where H0 is given by Eq. (2.1)

and

is the measure of the surface induced anisotropy assumed to be the same for all
lattice sites.

The Hamiltonian H' does not cominute with H0 since the latter can change
the number of adjacent lattice points occupied by minus-spins. However, in the
spirit of noninteracting spin-wave approximation we can calculate the eigenvalue
of H' as if no two minus-spins ever occupied adjacent lattice sites

where 2ft is the number of nearest-neighbours in the thin film.
In this approximation H' and H0 commute, the eigenvalue of H' can be

combined with the eigenvalue of H and the partition function can be written in
the form

where

We will consider the mono- and double layer as the assumption that the
surface induced anisotropy is the same for all atoms is justified in these two cases.
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3.1. Anisotropic monolayer

The calculation of s? in the case of monolayer can be performed exactly in
the same way as for a bulk ferromagnet [10]. We can write

where

2fm is the number of the nearest-neighbours in the monolayer and W(i) (q) is
the joint probability that the minus-spin initially at ji1 arrives after li1 steps at
ji1 , the minus-spin ínitially at ji2 arrives after di2 steps at j^ 3 , etc., and finally
the minus-spin initially at jiq arrives after liq steps at ji 1 restoring the original
configuration [10]. The presence of the factor Ρ 1 accounts for the possibility of
obtaining indistinguishable configurations by interchanging identical objects.

Similarly as for the bulk ferromagnet,

where N is the number of lattice sites in the monolayer, and

where

The expression (3.14) differs from the corresponding formula for bulk isotropic
ferromagnet in two points. Equation (3.14) contains ΔJ which is the measure of
the anisotropy and RP is to be calculated for two-dimensional lattice. It is easy to
verify that for the sc lattice

where I0 is the Bessel function.
Now we can write the expression for the free energy F = —kT In Z of the

system and calculate the spontaneous magnetization using the standard relation
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Since the asymptotic expansion of the Bessel function for large argument is known,
the low temperature expansion generalized for an arbitrary spin can be finally
written in the following form:

where

replaces the Riemann ς function appearing in the corresponding expression for an
isotropic ferromagnet.

The function ς(x, 1) does not diverge for x > 0 (ΔJ > 0) and reduces then
to the elementary function

The effect of anisotropy on the spontaneous magnetization calculated from
the expansion (3.18) truncated after first two terms is shown in Fig. 1. The fig-
ure shows that even a very small anisotropy can restore the spontaneous mag-
netization. The figure also shows that the spontaneous magnetization exhibits a
quasi-linear behaviour in a certain temperature regions depending on the magni-
tude of the anisotropy.
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3.2. Anisotropic double layer

The calculation of s? can be performed using Eq. (3.7) provided that fm
is replaced by the bulk value f and Wk (q) is expressed in terms of probabilities
TI (i1 j2 ) that the minus-spin initially at j 1 arrives after 1 steps at j2 not crossing
any of two surfaces of the double-layer

Let us assume that we have the double-layer of the sc symmetry and (001)
surface planes. It is convenient to decompose the random walk of a minus-spin
into the unrestricted random walk within the plane parallel to the surface and the
random walk in the perpendicular direction

where Jm has the same meaning as in Eq. (3.7), fm + fp = f, P and Q are
the probabilities for the random walk parallel and perpendicular to the surface,
respectively, and j = (j||, na ).

The probability Qn for the random walk with absorbing traps was discussed
in details in Refs. [16] and [17]. The problem of the random walk in the double
layer can be reduced thus to two-dimensional unrestricted walk in the plane and
one-dimensional walk with absorbing traps placed, say, at n -1 and n t2 = 2.
The generating function for the one-dimensional walk with the absorbing barriers
can be written as

where

with

Setting nz to nt1 and nt2 and solving resulting set of simultaneous equations we
get after some rearrangements,

and

It can be easily shown that Eq. (3.13) is also fulfilled in the case of the
double layer. The summation over li involved in Wl;1+„liq can be performed. The
summations over li and 1 and over p and m subjected to the conditions (3.10)
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and (3.11), respectively, can be replaced by the independent summations from Ο to
oο over li and p and the partition function can be written in the following form:

where

Using Eq. (3.22) and taking into account that Pl is the probability of return for
the random walk on two-dimensional lattice,

Now, we can use again the representation (2.31) of the reciprocal of k! and write

where

The integral in Eq. (3.32) is easy to calculate and

The asymptotic expansion of W(q) can be now obtained and the spontaneous
magnetization, generalized for an arbitrary spin, can be finally written in the form

The above equation differs from the expansion (3.18) for the monolayer by the
presence of the factor one half in the second term. The argument of the ζ function
s also slightly different. If we, however, re-scale the coordinate in Fig. 1 and ΔJ
we can use this figure to illustrate the behaviour of the spontaneous magnetization
as a function of temperature also for the double layer.

4. Conclusions

The random walk technique was used to derive the full low temperature
expansion of the spontaneous magnetization for the semi-infinite Heisenberg fer-
romagnet. The derivation is exact within the scope of the noninteracting spin-wave
approximation. The spontaneous magnetization in the surface layer for semi-infinite
ferromagnet starts with the term Τ3/2 in agreement with previous results. It was
also shown that the spontaneous magnetization of anisotropic ultrathin film ferro-
magnets exhibits quasi-linear behaviour in certain temperature regions depending
on the magnitude of the exchange anisotropy.



where now the joint probability Τ( )(q) that q minus-spins forming q-ring restore
their initial configuration passing t times by the surface plane is given by
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Appendix
Derivation of the expression for (S.z 1 )

Equation (4.2) of Ref. [121 assumes the following form.

and jsi  denote the lattice sites belonging to the surface layer. The operator 
σzj

appearing in Eq. (2.5), according to Eqs. (2.16)-(2.12), fixes successively the posi-
tions of minus-spins in the configuration u 0 . Collecting together the terms which
correspond to qi ring we obtain pqi qi identical terms and the local mean spin value
can be written as

Performing the summation over Pq and generalizing the result for the case of
S> 1/2 we get
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Using Eqs. (2.20) and (2.21) and performing summations over jsi  we get the result
which depends only on the position of crystal layer with respect to the surface
layer and can be written in the form of Eq. (2.24).

The use of the representation (2.31) of the reciprocal of n! allows us to
perform the summations over ik and tin Eqs. (2.25) and (2.23) and to reduce (2.24)
to the expression

The Bessel functions result from the integration over dpx dpy and it can be easily
shown by contour integration that the above equation can be reduced to Eq. (2.33).
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