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Results of calculations of the electronic stopping power and the energy
loss straggling for low velocity H-, He-, Li- and Be-like projectiles in the de-
generate electron gas are reported. The Hartree—Fock—Slater description of
the projectile and the dielectric function method were used. The size param-
eter Zmin of the charge distributions calculated from a variational principle
depends on the characteristics of the medium. The stopping and straggling
effective charges Zef of a projectile were analysed. They were found to differ
with each other and to depend on the one-electron radius rs, on the pro-
jectile atomic number Ζ, and on the number of electrons Ni carried by the
projectile.

PACS numbers: 71.45.Gm, 34.50.Βw

1. Introduction

• 	 After crossing the surface of a solid a slow atomic nucleus captures electrons
forming intermediate electronic conflgurations up to being almost completely neu-
tralised as it stops. This configuration strongly modifies the electronic stopping
power and the energy loss straggling for the ion beam, which are important in
analysis of distribution and lattice localisation of implanted atoms or in analysis
of surface structure. The most important works in this field [1-5] were related to
analysis of the stopping and straggling of an atomic nucleus as a projectile and
neglecting thus an effect of its electronic configuration. A common feature of these
theories is proportionality of the stopping power to velocity v and the energy loss
straggling to v 2 . The target and the projectile dependencies contained in the pro-
portionality factor are model-dependent and they are different. The target, which
consists of the free electron gas (at T = 0 K), is characterised by the one-electron
radius rs (n = 3/4πr3sα30 is the electron gas density). The projectile consists of an
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atomic nucleus of atomic number Ζi, moving slowly with velocity ν and carrying
Ni electrons.

In this paper m, e, α 0, and v 0 are the electron rest mass, the elementary
charge, the Bohr radius, and the Bohr velocity, respectively. Atomic units are used
throughout.

2. Calculation procedure

The probability for transfer of the energy ω and the momentum k to a
degenerate free electron gas from a projectile is described within the random phase
approximation (RPA) by the equilibrium dielectric function c(k, ω). Commonly
the dimensionless parameters z = k/2kF , u = ω/kvF and χ2 = rs/πα are used,
where kF = α/α0r s is the modulus of the Fermi wave vector and α = (9 /4) 1 /3

The electronic stopping cross-section S and the straggling parameter Ω 2 (per free
electron) for a projectile of velocity v are given by [1, 2]:

where

where the dielectric function reads ε(u, z) = 1 + (χ2/z2)[f1(u, z)+if2 (u, z)], EF =
2 /2r is the Fermi energy, and the factor 4πe 4 /mv 2 = 4πe 2 α 0 (v 0 /v) 2 . The form

factor Ζ 2 (z) is the Fourier transform of the spatial electron distribution on the
projectile [6-8] being a sum of the screening component Ζ and the anti-screening
component Ζ2a ,

where p(z) is the one-electron form factor.
Explicitly Eq. (2) takes the form

The conduction electrons of a solid screen the quasi-static electric potential of
a slow projectile due to dielectric response. Provided the speed of the atom is lower
than the Fermi velocity VF, this screening can be approximately described in terms
of the Coulomb potential between charges with the screening function exp(-rk TF ),
where the Thomas-Fermi wave number kTF is related to the Fermi wave number
as kTF = 4kF/πα 0 . In this approximation we neglected to account for the full
Lindhard dielectric function. More precisely, instead of the exponential decay the
screening function displays rather the Freedel oscillations V α cos(rkTF)/r3 caused
by sharpness of the Fermi surface at T = Ο K.

The size parameter of bound electrons cloud can be determined either sta-
tistically or quantum mechanically. We want to determine stopping and strag-
gling characteristics of the electron gas for an extended charge projectile by means
of a size parameter of the charge distribution. This parameter is modified when
the projectile enters a solid. When we deal with slow heavy projectiles carrying
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many electrons, then the statistical description and the density functional method
are justified. When we consider projectiles with a small number of electrons the
Hartree—Fock-Slater (HFS) description must be used. The intermediate region
cannot be treated analytically.

We determine the volume parameter λ from the condition of minimum for
the expectation value fI of the total self-consistent Hamiltonian given (in hartree
units) by

with the orthonormal, one-electron trial eigenfunctions forming the HFS determi-
nant (λ = α 0 /Ζ or Ζ alone are variational parameters)

The expectation values for the total Hamiltonian describing different 1s2s
configurations can be calculated as

where the eigenenergies (E), the Coulomb (V), and the exchange (A) integrals are
given in Appendix.

The Fourier transform of the spatial electron distribution on the projectile
carrying Nis electrons in the 1s state and N23 electrons in the 2s state (Ni =

Nis N2s ) from Eq. (6) reads

3. Results and discussion

We carried out calculations for extended charge projectiles moving slowly in
the uniform electron gas. We get analytical results for the stopping power and for
the energy loss straggling for the gas described by Lindhard's dielectric function

ε(u,z)= 1 + (χ2/z2)[f1(u, z)+if2(u,z)][1, 2]. The Lm, functions of Eq. (4) are
expressed as
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The variable u = mω/kkF = hω/ΖΕF measures the energy hω (in units of
the Fermi energy EF) transferred from the projectile to the medium. For slow
projectiles the energy transfer is very low, i.e. u « 1, therefore the approxima-
tion leading from Eq. (4) to Eq. (9) is justified. In this case the approximation
f1(0, z) = 1 - z 2 /3 can be used, therefore the denominator in Eq. (9) reads [z 2 +
X 2 (1 - z2/3)]2 = (χ2/χ'2)2(z2 +• χ'2)2, where χ' 2 = χ2 /(1 - χ 2 /3). For real metals
1.5 < r < 5.8, therefore 0.50 < χ < 0.98 and 0.52 <Χ' < 1.19.

From Eq. (1), in atomic units (hartree/'α0 and hartree 2 /α0 ), we get

For heavier ions carrying many electrons we get analytical formulas for C's
cited in the previous paper [9].

In the case of projectiles carrying a small number of electrons in the 1s and 2s
states and described by the form factor from Eq. (3) we get the functions C1 and C2
in closed analytical forms. They depend on (Zi, r s , N1s, N2s ) parameters. Due to
their complicated forms they will not be presented here, but can be obtained from
the author on request. The analytical result allows for power expansion, contrary
to the direct numerical integration in Eq. (9). L1 and Cm are dimensionless and
L2 is expressed in atomic hartree units.

This formulas are directly reduced to the case of an atomic nucleus by setting

When a projectile with few electrons moves in the vacuum then γ = 0,
and then the H's of Eq. (7) reach minima (calculated from the requirement

∂H/∂Ζ =0) at Zmin equal toZH = Ζ,Ζ e =Ζi-0.3125, ZLi, = Ζi —0.45458 and
Ζ e = Zi — 0.6284, for hydrogen-, helium-, lithium- and berilium-like electronic
configurations, respectively. The corresponding energy minima are: HHe = -Ζ2He ,
HLi = —(9/8)Ζ2Li, HΒe = —(5/4)2$ e in hartree units. When the projectile moves
slowly in a solid, keeping all the time a stable electronic configuration, these pa-
rameters are modifIed due to interaction with electron gas. For each electronic
configuration the screening parameter λ (Zm i n ) was calculated by taking numeri-
cally minimum of the appropriate H from Eq. (7), therefore λ depends on Ζi,  N,
and additionally on r s . Subsequently λ was used in Eqs. (8, 3).

'This solid state effect on screening was shown in Fig. 1. We plot the difference
Ζm i n for Be-like projectiles, as a function of Zi and rs . It is obvious that all

such Zm i n functions tend to the above limits in the dilute electron gas, as r s is large.
For a dense electron gas (small rs ) the functions are larger than the limits, which
means stronger screening of the projectile nucleus interaction by the medium. This
screening is more important at low Ζ.
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The common feature of the present and other results is that the stopping
power S is proportional to v and the energy loss straggling Ω 2 to v 2 at low ion
velocity v. The differences are model-dependent and are related to the coefficient
of proportionality C(Ζ , rs , N1 s, N2 s ) which incorporates both the target param-
eter rs and the projectile parameters Z , N1 s , and N2 s . They cannot be further
simplifled or separated even after power expansion.

In order to perform calculations we assume a stable in time, frozen charge
distribution on the projectile. Within this model Ι .6. 7, 9] the projectile charge in
the Fourier space which contributes to Eq. (9) is sum of the screening compo-
nent [1 - p(z)N /Ζ ] 2 and the anti-screening component {1 — [p(z)] 2 }Ni/Ζ . As
long as we deal with slow, heavy projectiles, considering only the screening compo-
nent is justified. For light and neutral projectiles the anti-screening must be taken
into account, since it enhances the stopping and straggling by about 10%. From
Eq. (3) we find that in the low momentum transfer limit Ζ 2 (0) = [1 — N /Ζ ] 2 we
get reduction of soft, distant collisions contribution to the loss process. The large
momentum transfer limit Z 2 (οο) = 1+ N /Ζ2i gives enhancement of the contribu-
tion from hard, close collisions due to excitations of the electron gas by projectile
electrons.

In order to analyse results we should realise that dependence of C's on Ζi
means that the proportionality of the energy loss and the straggling to Z?, correct
for a point charge, is broken iná case of an extended charge, and the projectile
excites the medium as a stable charge configuration. The behaviour of C's with
rs can be understood by noting that the energy absorbed by the electron gas on
collective excitations drops as rs3/2 and the number of electrons subjected to the
single particles excitations are related to the density of states below the Fermi
level EF.
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From the previous paper [10] (when statistical description of the projectile
electrons is applied), if we expand C1 and C2 in a power series we find that for a

dense medium and for a heavy projectile C1 α rs Ζi- 4/3 and C2 α rs Zí 2/3. From

Eq. (10) we get dE/dx α Ζi2 / 3 and ,Ω 2 /x α Z4 / 3 , respectively.
For the energy loss analysis the concept of effective charge is applied [6, 7, 9].

It relates the stopping and straggling produced by a given projectile to the same
characteristics produced by the projectile atomic nucleus. We define the effective
charge for the stopping Zef1 and for straggling Zef2 separately as

For a point charge Zefm = 1. An independence of Zefm on Zi means that
the Bethe ZZ scaling is only accidentally valid for both stopping and straggling.
This scaling is related to the same contribution of close and distant collisions in
the process of energy transfer to the electron gas. In the static case the result
Zef < 1 means that projectile electrons screen the Coulomb potential of the pro-
jectile nucleus. As an example we have shown in Fig. 2 the stopping power effective
charge Zef1 for Li-like projectiles. In the dilute electron gas (r s = 6) and for low pro-
jectile atomic number Ζi the effective charge is much smaller than unity, Zen « 1.
For large Zi it tends slowly to unity.

It is of interest to see how large are the atomic and the electron gas screening
contributions calculated for Zmin, when compared to the Zmin = Zi case. The
difference between the stopping power effective charges Zef1 are plotted in Fig. 3
as a function of rs and Zi for Be-like projectiles. It reaches maximum at r s = 0.7
for small Zi and rapidly decreases to zero as Zi increases. The energy straggling
effective charge Zef2 displays the similar behaviour.
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In Fig. 4 the differences between the effective charges for straggling and for
stopping Ζef2 - Ζef1 is shown for Be-like projectiles as a function of r s versus Ζ.
The atomic and the solid state effects were included here through Zmin calculated
by taking minimum of H(Be = 1s 2 2s 2 ) in Eq. (7). The differences between both
effective charges are rs dependent (they amount to 3.5%) for small Zi and tend
to zero as Ζ increases. This interesting feature is caused by a structure of the
integrals in Eq. (9).
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Another interesting question is how the effective charge will change, when we
add (or remove) one electron to (from) the projectile. In Fig. 5 we have shown the
difference between the stopping effective charge Zef1 for a Be-like projectile of the
net charge Zi -4 and the stopping effective charge Zef1 for a Li-like projectile of the
net charge Ζi, - 3. Nearly for all r s and Zi, Zef1 (Be) < Ze f1 (Li). Asymφtotically,
for large Zi , adding one electron to the projectile causes negligible decrease in
the effective charge. For a dilute electron gas and for small Ζi this difference
reaches 0.2. For a dense (rs = 0.7) electron gas the situation is opposite: Zef1 (Be) >
Zef1 (Li) which means that a Be-like projectile transfers the energy to the medium
more effectively than a Li-like projectile.

4. Conclusions

Result of the calculation for the electronic stopping power and the energy
loss straggling of free electron gas for low velocity H-, He-, Li- and Be-like projectile
was presented. The Hartree-Fock-Slater description of the projectile in a solid was
used. The size parameter λ (or Z) was determined from a variational principle
and shown to depend on r s , Ζ , N 1s , and N2 3 . The anti-screening correction was
included and found to be important for small Ζi. The dependence of the effective
ion charges on the target electron gas density r s and on the projectile atomic
number Zi and the number of electrons on the projectile was discussed.

Appendix

The eigenenergies (E), the Coulomb (V), and the exchange (A) integrals
were calculated as (γ = kΤFλ and γ' = 2γ/3)
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