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NONLINEAR MANY-STAGED DIFFUSION
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We considered and solved the nonlinear diffusion equation formerly. The
more complicated but more useful task of many-staged diffusion is solved
in this paper. The obtained solution satisfies the initial distribution of the
impurities and can be generalized for many-staged diffusion. Using these
solutions we can take into account all the stages of a planary transistor
formation.

PACS numbers: 66.30.—h

1. Introduction

In Ref. [1] the following nonlinear diffusion equation was proposed:

where the diffusion coefficient was directly proportional to the impurities concen-
tration

where D0 is pre-exponential factor and E is the activatiol nergy of the diffusion
in solids. The concentration dependence of the diffusion coefficient D was defined
by Na [1, 2].

The similarity solution of the nonlinear diffusion equation was obtained in
a form of the power series of similarity variable ξι. We will use the approximate
solution [2]

(731)
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which for the first-stage diffusion from infinity source satisfies the following
boundary:

and initial

conditions. In this paper we will solve the important drive-in or second stage
diffusion task, which is useful for the base formation of the bipolar transistor.

2. Mathematical model of the many-staged diffusion
of impurities atoms

Nonlinear equation of diffusion (1) is being considered for the second stage
diffusion with the following boundary conditions:

and initial condition

We can solve the drive-in problem going to a new similarity variable

where D2 is the diffusion coefficient for the second diffusion stage. The solution of
diffusion equation (1) in this case has the form

Here D1 and D2 are diffusion coefficients, while t 1 and t are diffusion times for
first and second diffusion stages, respectively.

Substituting (10), (9), (2) into (1) we obtain the following differential equa-
tion:

Taking into account initial conditions (8) and (10) we can obtain the initial con-
dition for f (ξ)

After integrating the last equation from ι to ξ we get

From this equation and initial condition (12) we obtain the very useful relation
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Considering the initial conditions for (9), (10) and the last expression, we decide
that the function f() describing the drive-in diffusion has the same expression
as the function f(ξ1)1 describing the introduction or first stage diffusion (3), only
the latter depends on other similarity variable . Then solution (10) of Eq. (1)
satisfying boundary (6), (7) and initial (8) conditions can be presented in the
following form:

The number of the introduced impurities atoms in the first diffusion stage

can be obtained from (3)

For the second stage from (10), (9) we obtained the same result.
From (3), (15), (9) we obtain the maximum penetration of the impurities

after the drive-in diffusion for the time t:

From formulas (3), (17) and (18) we obtain very useful relation between surface
concentrations and penetration depths

Substituting (9) into (3) and using (10) we obtain

From the last expression we can see that the first derivative of impurities concen-
tration at the origin tends to zero while the time of second stage of diffusion tends
to infinity because drive-in of impurities from the surface occurs very slowly. The
high initial concentration of the impurities at the surface generates the decreasing
current density

which we can obtain from formulas (15), (21)

From (22) we obtain the expression

for the ratio of the current density to the current density at the initial moment.
This ratio tends to zero when D2t» D1t1.
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3. Conclusions

In Refs. [3, 4] the dependence of diffusion coefficients on the impurity concen-
tration near the surface was considered. For high concentration arsenic or boron
diffusion in silicon we can count up that diffusion coefficients are directly propor-
tional to this concentration. For high phosphorus concentration [4] the situation
is more complicated. But even in this case [1] the theoretically calculated profile
fits very closely to the experiment while the fitting of the classical solution Nerf

to the experimental profile tail region is impossible [1, 2].
When the first stage diffusion contains the diffusion from the infinity source

and following n stages drive-in diffusion, we must substitute in (9), (10), (15):

with

The many-staged diffusion boron in silicon with the first stage obtained
by the ion implantation [5, 6] is compared with the theoretical normalized pro-
files X, Z, Y calculated by (3), (9), (10), (15) in Fig. 1. The ion implanted
profile X localized at the surface can be approximately described by (3) with
D1 t1 = 3.834 x 10 -3 μm2.This approximation can be obtained from the implan-
tation depth 0.1 m and (3). When the drive-in time is long enough, the difference
between the real profile of implanted impurities and first stage profile of thermal
diffusion does not play any role for definition of drive-in profiles. The drive-in
profihes Z and Y were calculated at diffusion coefficient D = 10 -6 μm2/s and
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times t 2 = 60 min, t3 = 240 min consequenthy. The obtained normalized profiles
satisfy the relation (19) with high accuracy. There we obtain x02 = 0.168 μm,
Ns2 /Ns1 = 0.802, x03 = 0.228 m, N53 /Ns1 = 0.595, x 02 Ns2 /Ns1 = 0.135 m,
x 03 Ns3 /Ns1 = 0.136 μm. The obtained results and Eqs. (17), (19) show that
conservation of an amount of 'the implanted ions of boron is also satisfied with
sufficient accuracy. The many-staged model presented in this paper is more gen-
eral and includes the first stage diffusion [2] as initial condition. For long-time
second-stage diffusion when D2 1 > D 1 í 1 we obtain that penetration depth (18)
x 0 is proportional to t 1 / 3 and drive-in diffusion occurs more slowly than in the
case of first stage (3). The same time ι dependence was obtained for the frontier
of the nonlinear diffusion [7] from finite impurities source in the zero point. In
this case Nsix0i = 1.5Q1. The penetration depths x 2 = 0.17 μm, x3 = 0.23 m
and N2 /N1 = 0.65, N3/N1 = 0.4 presented in [5, 6] are in good accordance for
depths and worse for surface concentrations obtained above. The last difference
is the result of borons diffusion into SíO2 and an exact conservation of impuri-
ties for profiles in [5, 6] is not satisfied. It is remarkable that the obtained solu-
tions (3), (10), (15) include the same function f which depends οn different simi-
larity variables (3), (9) defined in the same region. It means that solutions for all
diffusion stages are found with the same accuracy. The similarity variables method
proposed in this paper is more advanced than Laplace's transformations method [8]
for solving the diffusion drive-in task. Using the obtained solutions (3), (10), (15)
we can take into account all the diffusion stages of a planar transistor formation.
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