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A gas of spin 1/2 fermions with an interaction V + W =
- ΣΡk k' gkk , b1b* kbklb—k '  + Σk γkbkbk, where bk = ak+ αk_ and αkσ, α,σ "
satisfy Fermi anticommutation relations, is investigated. The trial ground
state |G) is similar in form to the BCS ground state, with bb-k replac-
ing αk+ α*_ k_, but because the excitation energies are not simply additive,
the trial density matrix ρ0 differs from the BCS one. The expectation values
(G|H|G)and Tr(Hp0 ) are minimized, revealing the presence of a second-order
phase transition, with T, > Τc(ΒΟS) for appropriately adjusted Yk. It is shown
that the minimization procedure applied leads to an expression for the free
energy density of H, which is asymptotically exact in the infinite-volume
limit. Comparison with experimental data on high-temperature supercon-
ductors is made and for a particular choice of γk qualitative agreement
is found with the temperature dependence of. the order parameter of the
BSCCO superconductor.

PACS numbers: 74.20.—z, 74.20.Fg

1. Introduction

It is generally accepted that current carriers in high-Τc superconductors
(HTSC) consist of tightly bound local pairs of spin 1/2 fermions with opposite
spins, e.g. [1-4]. Hubbard-type Hamiltonians are usually proposed as theoretical
models of HTSC due to the flexibility with which local pairing interactions can be
modelled in these systems, e.g. [1, 2, 4, 5].

A system of strongly correlated electrons, set up in the framework of the
Hubbard model, the so-called spin liquid, in which the same number of degrees
of freedom, corresponding to compensated spin configurations, are removed from
either k-space or real space, was proposed in Refs. [6-8]. A particular realization
of the spin liquid, obtained by adding to the BCS Hamiltonian the term
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where nk σ = α*kσαk  σ and αn σ , αkσ are fermion creation and annihilation operators
corresponding to momentum k and spin σ, was investigated in Refs. [9, 10].

The interaction W in the form (1) can be viewed as a pair-binding potential
of magnetic origin. However, when written in terms of b = α*k-α*k + = αk+ αk_,
it takes the form

reminiscent of the kinetic energy operator of a free quantum gas. In HTSC the
quasiparticles represented by the operators b , bk , as well as fermions which are
not bound by W, can be expected to interact via the phonon field, owing to
the presence of a weak isotope effect in these materials [11-13]. The form of the
effective BCS Hamiltonian

and the similarity between W and Τ suggests therefore a 4-fermion operator of
the form

(g) ' having the same symmetry properties as Gicie) as a possible phonon-mediated
attraction between bound pairs in a HTSC and a full Hamiltonian of the form

The functions γk, gkk' in H will remain unspecified, the only assumption being
that their particular form should be adjusted so as to obtain the best possible
agreement of the resulting theory with experiment.

In Secs. 2-4 minimization procedures for the ground-state energy of H and
free energy of H are performed. The trial ground state |G) for H is similar in form
to the BCS ground state [14], but the quasiparticle excitation energies from |G)
are not simply additive. The structure of excited states and excitation spectrum
define the structure of the trial grand canonical density matrix p0 and minimiza-
tion of the free energy F[p0] determines p0 uniquely. The order parameter Δk
satisfies a gap equation which has a non-zero solution below Τ , proving that Τ  is
the temperature at which the system undergoes a 2nd order phase transition. At
T> TT the system behaves like a gas of free fermions and free bound pairs, whereas
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below Τ< the interaction V takes full effect and the interacting Fermi gas with the
Hamiltonian H behaves like a gas of fermion quasiparticles with energies which,
in general, are not additive. .

If Υk = 0, then Τ< < T<(ΒCS) for the same values of g,kk', conduction
half-bandwidth δ and density of states p near the Fermi level μF = k2k/2m as in
the one-parameter BCS model [14]. The interaction V is thus weaker than VBCS,
in agreement with weakness of the isotope effect in HTSC. However, Tc > Tc(BcS)
if |εk + γk/2| is sufficiently small, suggesting that H could, possibly, serve as a
model of HTSC.

In Sec. 5 a test on validity of this conjecture is performed by comparing ex-
perimental data on Δ(β) for the BSCCO superconductor with theoretical predic-
tions for the choice γ(εk) = -2|εk| in W. Qualitative agreement is found between
predictions of the model and experiment.

In Sec. 6 it is shown by a method of Czerwonko [10] that the minimization
procedures applied to H in Secs. 2-4 yield an expression for the free energy density
which is asymptotically exact in the infinite-volume limit.

2. The ground state

Since V and VaCS are similar in form, the appropriate trial ground state | G)
for H can be expected to be similar to the BCS ground state |BCS), with the
bib* operators replacing α*k+a* -k-:

where k : k> 0} stands for the set of vectors with one fixed, but arbitrary, com-
ponent positive and uk, v are real variational parameters satisfying ι4 + v& = 1.
Obviously, u = u-k, vk = v-k and (G|G) = 1.

This expression is similar to the expectation value
(BCSMBCs|BCS) = (BCS|T + VBCs |BCS).

The only difference is that εk + γk/2 in (7) replaces εk in (BCSMBCS|BCS). The
uk, v which minimize (G|H|G) are therefore analogous to the BCS ones:

where vk = εk+γk/ 2 , Ε& = (ν2k+Δ2k)1/2 and Δ/k = Εk' gkk ukιvk' is the solution
of the zero-temperature gap equation

For g' = gχ(k)χ(k') if k ψ k' (X(k) denoting the characteristic function of the
set {k : εk E [μ - δ, μ + 6]}) and γk = 2γεk, γ> —1, the equation for μ, viz.,
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where n denotes the number of fermions, has a solution μ # μ' and the nontrivial
solution of Eq. (9) is Δk = Δχ(k), with

If γk = 0, then μ = //F and Δk = δ[sinh(gρ) -1 ] -1χ(k). The proofs are given in
Appendix A.

Similarly as in the BCS model,

suggesting that the ground-state properties of the system with the Hamiltonian Η
are analogous to those of HBCS except for the shift of the Fermi level μ. This
conjecture is proved in Sec. 6 by investigating the infinite-volume limit for Η. The
3-dimensional Hubbard model in the weak-coupling limit or, equivalently, at low
temperatures [4, 15, 16] and some 2-dimensional local systems [17] also exhibit
BCS-type behaviour.

3. Excited states

Having found the best ground state vector |G) in the set of trial vectors intro-
duced in Sec. 2, the approximate excited states can be determined by proceeding
similarly as Bogolyubov and Valatin with |BCS) [18, 19], i.e. by first solving the
equation for α

The solutions of this equation can be most conveniently written using the notation
ak1 := ak+, αk2 := ak-, αk3 := α-k+, αk4 := α-k-. Equation (12) is then
satisfied by
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The normalized k-excited states are therefore (cf. [18, 19]) represented by
the following vectors:

According to Eqs. (13)-(15), the excitations represented by the operators α* ki are
neither fermions nor bosons. Nonetheless, some of their properties are the same
as those of particles obeying Fermi or Bose statistics: the set of vectors (16a—d),
with varying k, is an orthonormal system, the number of excitations in any state
(16a-d) can be lowered by acting on it with the operators ßgi , e.g.,

The vectors (16a-d) are eigenvectors of the operators α*kiαki , viz.,

but, as implied by these equations, in general, their eigenvalues are not equal to
the number of excitations present in the eigenvector. The excitation energies from
the ground state |G) are equal
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It follows that, unlike in BCS theory, these energies are not simply additive when
counted in the k-space spanned by |Gk) = (uk + vkb*kb* k )|0) and the vectors
(16a-d).

The structure of the subspace Mk = M-k spanned by the orthonormal basis
B/k consisting of Gk) and vectors (16a-d), shows that there also exist fermion op-
erators ck σ which annihilate the vector |Gk). To construct tnese fermion operators
let us introduce the unitary transformation Uk = U-k defined as

Since ckσ results by transforming unitarily αk σ , the anticommutation relations
between the operators αk σ , α*kσ, α-kσ , α* kσ , are preserved by ckσ , c*kσ,  C-, c* kam.

The structure of excited states (16a—d) is also preserved, since in Mk, e.g.,

4. Minimization of the free energy

The form of the trial grand canonical density matrix p0 is determined by the
structure of |G), the excited states (16a—d) and the excitation energies (19a—e). In
order to write down p0, let us define the projectors

Since there exist two types of two-quasiparticle excitation energies, whereas the
excitation energies of one- and three-quasiparticle excitations do not depend on
the type of quasiparticles involved, tnerefore
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In terms of

p0 takes the form

The entropy S[p0] equals

and the average energy in the state p0

The free energy ,F[p0 ] = Ε[ρ0 ] - TS[p0] is minimized by the appropriate solutions
of the equations

The unique solutions of Eqs. (24), expressed in terms of
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These excitation energies have the same form as those previously found in (19a—d).
It follows from (27) that the gap Γ(β) in the excitation spectrum depends

on the form of γk and is present already at T> Τ. In this range of temperatures

The presence of a gap above and below T^ in HTSC has been observed experimen-
tally (cf. e.g. [4]).

As for the density matrix p 0 , with eki, 4 2 given by (27), it can be written
in the standard form

but h0 is not expressible as ΕG + Εk j hkj α*4j αkj , or ΕG + Σkj hkj c*kj αkj , as it
would be in the case of noninteracting fermions or bosons.

Equation (25) takes the form

The solutions uk, vk are the BCS ones given by (8), with Δk the solution of
the equation

Equation (29) is analogous in form to the gap equation of BCS theory, with
F(β, Ek, 1'k, γk) replacing tanh 1/2βΕk. The growth and convexity properties of
F(β, x, y , z) and tanh ; βx are similar:

The inequalities in (B), (C) are fulfilled if γk = -2|k |+σk, where | σk| « |εk |
It follows therefore that for such γk Eq. (29) is satisfied at all values of β > Ο by
the trivial solution Δk = Ο and if gkk' > Ο is nonvanishing on a suitable subset
with nonzero Lebesgue measure in 1 x 1Z3 , a non-negative solution Δ(β, k) of
this equation exists for values of β above some β, . Δ(β, k) > Ο is increasing in
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β in the interval (β, oo) from Δ(β, k) = 0 to a finite value Δ(∞, k), because
x -1 F(β, x, y , z) is decreasing in x for x > 0. (The proof is given in Appendix B.)

The inequalities in (B), (C) are also satisfied for εk > 0 by γk =
2|εk| + σk, |σk| « |εk|.The growth inβof the right hand side of Eq. (29) can

be therefore also assured by choosing γk = 2|εk | + and gkk'  = [g1X-(k) +
92Χ+(k)]Ι91Χ-(k')92Χ+(k')], where X+(k) = χ(k)χ[k : εk > 0], X-(k) = X(k)Xίk

εk <01,0< g1 «g2.
The free energy .T[p0] expressed in terms of the solutions of Eqs. (24), (25)

takes the form

and for β E (/3, cc) is minimized by the nontrivial solution of Eq. (29). (The proof
is given in Appendix C.) As a consequence, there is a second-order phase transition
at Χ.

The equation for u at the temperatures T> 0, viz.,

assumes the form

where

5. The critical temperature in the one-parameter model

In the one-parameter model with gkk' = gχ(k)χ(k') for k ψ k' the solution
Δk(β) of Eq. (29) has the form Δ(β) = Δ(β)χ(k). Equation (29) for the nonzero
solution Δ(β) simplifies to

The temperature β3 therefore satisfies the equation
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If 8βc » 1 and the integrand on the rhs of Eq. (34) vanishes sufficiently fast
as x → ±∞, then

Tc can be therefore increased to exceed Tc(BCS) by allowing |x + γ(x)/2|, where
γ(x) = -2|x| + σ(x), to assume values sufficiently small on a sufficiently large
interval above zero. Similarly, if γ(x) = 2|x| + σ(x) with |σ(x)| « ‚x| and gkk' =
[g1X-(k) + 92χ+(k)][g1χ-(k') + g2χ+ (k')], then Τc can be raised by allowing
|x + γ(x)/2| to assume sufficiently small values on a sufficiently large interval
below zero.

The inequality Τc < Tc(BCS) for γ = 0 shows that interaction V is weaker than
VBCS,which agrees with the weakness of the isotope effect in HTSC and confirms

the, generally accepted, decisive role of the pair-binding potential W in raising T,
in these materials, e.g. [20-22].

Consider now Eq. (32) for μ if = gX(k)x(k ' ) for k ψ k'.In the range of
low temperatures (large β) the term Σk 2G(ß, Ek, uk,γk) on the left hand side of
Eq. (32) is negligible compared to the flrst two summands. The resulting simplified
equation is not solvable in general. For γk = 0 the solution is μ = μF.

Another difference between the thermodynamics of Η and HBCS is in the
dependence of the ratio Δ(β)Δ(∞) -1 on the temperature. In BCS theory this
ratio depends exclusively on TT' 1 . This is not the case in the present model due
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to the fact that β enters into F through βΕk ,βvk, βγk and not exclusively through
βΕ . We have examined to what extent the plot of .(3).6(0o) -1 resulting from
Eq. (33) for γ(ε) = -2|ε| (in which case conditions (B), (C) are fulfilled and the
gap in the excitation spectrum equals Γ(β) = 2Δ(β)) can be adjusted to fit the
experimental data on .(3).6(0o) -1 determined on two types of junctions for the
BSCCO superconductor and depicted in Refs. [23, 24]. For γ(β) = —2 | ε|, Eq. (9)
for Δ(00) takes the form

Given α, Eqs. (37), (38) allow us to determine gp and δβc . For the choice
αn = 2.5, similar as in other fitting methods (e.g. Ref. [24]), one obtains δβc = 7.17,
gp = 0.2738. The resulting graph of Δ(β)Δ(oo) -1 , with 2Δ(00) = 1.81 x 10 -2 eV
for Τc = 84 K [24], is depicted in Fig. 1 and compared with experimental data on
BSCCO of Ref. [24]. Another comparison with the Δ(β)Δ(0o) -1 data of
Refs. [23, 24] for BSCCO and Τc = 85 K, with αn = 2.025, δββ = 124.783,
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gp = 0.016, 2Δ(∞) = 1.48 x 10 -2 eV is given in Fig. 2. For the crude choice
-2|44, agreement with experiment appears to be satisfactory in both cases.

Another confrontation with HTSC experimental data can be obtained by
comparing the values of 2α = 2Γ(∞)/kΒΤc . In HTSC this ratio assumes values
between 2.4 and 11 [24]. In the present model, for γ(ε) = -2|ε|, 2α = 5 and 4.05
in the two cases discussed above. In general, for this choice of γ(ε), 2α depends
on the value of gp according to Eq. (37) and

lim2α = 0 as gp → 0, lim2α = ∞ as gp → ∞ .
Thus, all non-negative values of 2α are admissible and the range [2.4, 11] observed in
HTSC is covered by tne present model. Further properties of the system described
by H are under investigation.

6. Asymptotic exactness of the variational procedure for H

In Ref. [10] Czerwonko developed a method of evaluating the infinite-volume
limit of free energy density for a Fermi gas with BCS attraction and repulsion
between fermions with equal momenta and opposite spins (described by W with
γk > 0). His method is applicable to the Hamiltonian H defined in Eq. (5) with
gkk/ of the form gkk ' = λL -3gkgk,, L3 denoting the volume of the system, and
allows us to prove the asymptotic equality

where .F[p0 ] is given by the expression (30). In order to carry out this proof, let us
first note that the sum of diagonal terms in the potential V with gkk' = λL-3gkgk',
viz.,
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is uniformly bounded in L if gk is square-integrable on 7Ζ3 :

and therefore does not contribute to L -3 1n Tr exp(-βΗ) in the limit L → ∞ ,
n --^ ∞, nL -3 = d. This form of gkk' thus fulfils asymptotically the requirements
imposed in the Introduction.

Let us write H, with gkk' = λL- 3gkgkι, in the form

ΔB = Β - (B). The gauge invariance of H admits the choice (B) = Re(B) = (Β*).
The thermodynamical perturbation method [10, 25-29] for the statistical sum
ΖΗ = Trexp(-βΗ) then yields

Thus in order to evaluate limL 3 ln ΖΗ, as L →∞ , it suffices to diagonalize H'.
This Hamiltonian can be written as

Ηρ acts in the 16-dimensional space of states

where ni = 0, 1, i = 1, 2, 3, 4. All the states (44), except for the two with n1 = n2 =
n 3  = n4 = 0 and n 1 = n 2  = n3 = n4 = 1, prove to be eigenstates of Hp . Due to
the commutation relations fulfilled by Ηp, viz.,

denote the spin projection and two seniorities A+ , A-, the diagonalization of Η,
can be carried out independently in the invariant subspaces of Ηp with fixed
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eigenvalues of 2S and A + , A-. This procedure reveals the following eigenstructure
of Ηρ :

Evaluation of ZH, = Trexp( -βΗ') is now a matter of some simple algebra. One
obtains

and reduces to Eq. (29) with gpp , = λL -3gρgρ,, for Δρ defined by Eq. (46). Using
Eq. (48), one finds that the free energy F = -β-1 ln ZH' is equal to .F[p0 ] given
by the expression (30). This proves, together with Eq. (42), the equality (39)
and establishes asymptotic exactness of the minimization procedure carried out in
Secs. 2-4.



Fermi Gas with 4-Fermion BCS-Type Interaction 	 673

7. Conclusions
We have demonstrated that the Fermi gas with the Hamiltonian H is asymp-

totically solvable in the infinite-volume limit. The ground state (6) is a BCS-type
product state of bound quadruples, the excitations are fermions but excitation
energies are not simply additive. The system exhibits a 2nd order phase transi-
tion: at Τ > Τ  only free fermions and free bound pairs are present, at Τ < Τ
the system behaves like a gas of fermion quasiparticles with energies which are
not additive. A gap is present in the spectrum which depends on the form of the
pair-binding potential W. The transition temperature  Τ  also strongly depends on
W and exceeds Tc(BCS) if |ε + γ(ε)/2| is sufficiently small in a sufficiently large
range. The experimentally measured temperature dependences of the gap param-
eter of the BSCCO superconductor have been compared with the theoretical de-
pendences resulting from H with W = - Σk 2|εk|nk+n,k_, adjusted bandwidth
δ and zero-temperature gap parameter 2Δ( ∞) = 2αβ~1c  1 for two values of 2α,
viz., 2α = 5, 4.05. The theoretical curves agree qualitatively with the experimen-
tal ones. Further questions relating to the Hamiltonians H and H', in particular
quantitative agreement with experiment for other choices of γ(ε), are under inves-
tigation.

Appendix A
For the 1-parameter model with γk = 2γλk, γ > —1, Eq. (10) assumes the

form

and after performing integration simplifies to

with the solution μ < μ if -1 < γ < 0 and μ > μ if γ > 0. For γ = 0 the
solution is μ = ρF.

The gap equation (9), for the same form of γk as assumed above, is

On performing integration

and solving for Δ , one obtains the solution (11).

Appendix B
In order to prove that x -1 F(β, x, y , z) is decreasing in x for x > 0, let us

first note that F has the form
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and therefore, as a function of x, has the same growth and convexity properties as
tanh βx. For any function F(x) with these properties, (x-1F(x))' < 0, as can be
seen from the Taylor expansion

and concavity of F for x > 0 : F'(x) < F'(x').

Appendix C

This has been done in Appendix B.
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