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A gas of spin 1/2 fermions with an interaction V + W =
- Zk’k, Ikk DR Lbpib_g: +Zk Yxbibe, where bx = axyax_ and axc,a}
satisfy Fermi anticommutation relations, is investigated. The trial ground
state |G) is similar in form to the BCS ground state, with b3b*, replac-
ing af,a’x_, but because the excitation energies are not simply additive,
the trial density matrix po differs from the BCS one. The expectation values
(G|H|G)and Tr(H po) are minimized, revealing the presence of a second-order
phase transition, with T'c > T, (pcs) for appropriately adjusted k. It is shown
that the minimization procedure applied leads to an expression for the free
energy density of H, which is asymptotically exact in the infinite-volume
limit. Comparison with experimental data on high-temperature supercon-
ductors is made and for a particular choice of v qualitative agreement
is found with the temperature dependence of the order parameter of the
BSCCO superconductor.

PACS numbers: 74.20.~z, 74.20.Fg

1. Introduction

It is generally accepted that current carriers in high-T. superconductors
(HTSC) consist of tightly bound local pairs of spin 1/2 fermions with opposite
spins, e.g. [1-4]. Hubbard-type Hamiltonians are usually proposed as theoretical
models of HTSC due to the flexibility with which local pairing interactions can be
modelled in these systems, e.g. [1, 2, 4, 5].

A system of strongly correlated electrons, set up in the framework of the
Hubbard model, the so-called spin liquid, in which the same number of degrees
of freedom, corresponding to compensated spin configurations, are removed from
either k-space or real space, was proposed in Refs. [6-8]. A particular realization
of the spin liquid, obtained by adding to the BCS Hamiltonian the term

W= Z‘Yknk+nlb-—» (1)
E

(659)
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where ng, = a},ago and a},, axo are fermion creation and annihilation operators
corresponding to momentum k and spin o, was investigated in Refs. [9, 10].

The interaction W in the form (1) can be viewed as a pair-binding potential
of magnetic origin. However, when written in terms of b} = a}_a},,br = agan-,
it takes the form

W= vbhbe (2)
4

reminiscent of the kinetic energy operator of a free quantum gas. In HTSC the
quasiparticles represented by the operators b}, br, as well as fermions which are
not bound by W, can be expected to interact via the phonon field, owing to
the presence of a weak isotope effect in these materials [11-13]. The form of the
effective BCS Hamiltonian

Hpcs = T + Vges,
where

T:Zekaiqako, €k :k2/2m—/4,
ko

VBcs = — Z Gri' 010 g 0o/ — k'
kB

~ (Gee =0, ImGrp =0, Grp =Gri=Gopp = Gr-r = G-p-w)
and the similarity between W and T suggests therefore a 4-fermion operator of
the form

V=- Z I Og bt g b gy (3)
BB
(ge&’ having the same symmetry properties as Ggg) as a possible phonon-mediated
attraction between bound pairs in a HTSC and a full Hamiltonian of the form

H' = Hpcs + W + V. (4)

In the present paper we deal with a simplified version of H’ in which Vgcs = 0
and

H=T+W+V. | (5)

The functions 7, ggs’ in H will remain unspecified, the only assumption being
that their particular form should be adjusted so as to obtain the best possible
agreement of the resulting theory with experiment.

In Secs. 2~4 minimization procedures for the ground-state energy of H and
free energy of H are performed. The trial ground state |G) for H is similar in form
to the BCS ground state [14], but the quasiparticle excitation energies from |G)
are not simply additive. The structure of excited states and excitation spectrum
define the structure of the trial grand canonical density matrix pg and minimiza-
tion of the free energy F[po] determines po uniquely. The order parameter Ay
satisfies a gap equation which has a non-zero solution below T, proving that T, is
the temperature at which the system undergoes a 2nd order phase transition. At
T > T, the system behaves like a gas of free fermions and free bound pairs, whereas
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below T the interaction V takes full effect and the interacting Fermi gas with the
Hamiltonian H behaves like a gas of fermion quasiparticles with energies which,
in general, are not additive.

If v = 0, then T, < Tyscs) for the same values of ggz/, conduction
half-bandwidth § and density of states p near the Fermi level up = k%/2m as in
the one-parameter BCS model [14]. The interaction V is thus weaker than Vgcs,
in agreement with weakness of the isotope effect in HTSC. However, T'c > Te(ges)

if |ex + vk /2| is sufficiently small, suggesting that H could, poss1bly, serve as a
model of HTSC.

In Sec. 5 a test on validity of this conjecture is performed by comparing ex-
perimental data on A(B) for the BSCCO superconductor with theoretical predic-
tions for the choice y(ex) = —2|ex| in W. Qualitative agreement is found between
predictions of the model and experiment.

In Sec. 6 it is shown by a method of Czerwonko [10] that the minimization
procedures applied to H in Secs. 24 yield an expression for the free energy density
which is asymptotically exact in the infinite-volume limit.

2. The ground state

Since V and Vpgg are similar in form, the appropriate trial ground state |G)
for H can be expected to be similar to the BCS ground state |BCS), with the
by b* 5 operators replacing ap, a* g _: »

G) = [T (ur +vebibzs)0), (6)

E>0 ‘

where k: k> 0} stands for the set of vectors with one fixed, but arbitrary, com-
ponent positive and ug, v are real variational parameters satisfying ug + vi =1
Obviously, ug = u_g, vg = v—g and (G|G) = L.

For (G|H|G) one obtains

(G|H|G) = 2Z(€’° +7k/2)vE — Z Ikl UBVEURE VE!. (7

E k' .

This expression is similar to the expectation value

(BCSlHBcslBCS> = (BCSlT + VBcslBCS).

The only difference is that e + 7%/2 in (7) replaces ¢; in (BCS|Hpcs|BCS). The
ug, vg which minimize (G|H|G) are therefore analogous to the BCS ones:

1 1
3 (1+wmEgY), vi= 5 (1-wEg?), (8)
where vy = €1 +71/2, Ex = (v} +A4})/? and A = Ek, gri ug vp is the solution

of the zero-temperature gap equation

= izgkklﬂyE;, . ' (9)
&'

ul =

For grp' = gx(k)x(k) if k # K (x(k) denoting the characteristic function of the
set {k:er € [u— 6,4+ 8]}) and yx = 2vex,7 > 1, the equation for y, viz.,

(G Eakaakalm =n, (10)

ko
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where n denotes the number of fermions, has a solution p # ur and the nontrivial
solution of Eq. (9) is Ax = Ax(k), with

A = 2sinh [M]
gp

1/2
x {(uv)z +6%(1+7)% = [(u1)? — 6%(1+7)?] cosh [zggﬁ;—ﬂ]} . (1)

If v = 0, then u = pr and Ag = §[sinh(gp)~1]~1x(k). The proofs are given in
Appendix A.
Similarly as in the BCS model,

E¢ = (G|HI|G) = Z [Vk(l - Egl) ~ %AiEE_l]
B

suggesting that the ground-state properties of the system with the Hamiltonian A
are analogous to those of Hpcs except for the shift of the Fermi level p. This
conjecture is proved in Sec. 6 by investigating the infinite-volume limit for H. The -
3-dimensional Hubbard model in the weak-coupling limit or, equivalently, at low
temperatures [4, 15, 16] and some 2-dimensional local systems [17] also exhibit
BCS-type behaviour.

3. Excited states

Having found the best ground state vector |G) in the set of trial vectors intro-
duced in Sec. 2, the approximate excited states can be determined by proceeding
similarly as Bogolyubov and Valatin with |BCS) [18, 19], i.e. by first solving the
equation for «

alG) = 0. (12) .
The solutions of this equation can be most convenieatly written using the notation
Gg1 = Gf4, Qg2 = Gk—, Q3 ‘= G_k4, Gk4 ‘= G_g—. Equation (12) is then
satisfied by

OF] = UEGR1 — VBOEo0k30Es, Or2 = UERGE2 + VEQE3AR40k1,

Ok3 = ULOE3 — VEGE10k20k4s Qf4 = URQR4 + VBAL; AFoaL3.

The operators ag; are anticommuting

[oki, aprjly = ariogr; + aprjoap; = 0, (13)
but

[ori, af;l+ = viagam: (-1 -y nu) for i # j, (14)

I#d,j

[oks, okil4 = 1+ 0} E Nkj Nk — Z nEj |, (15)
_ i) <l It
where ng; = a};ag;.
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The normalized k-excited states are therefore (cf. [18, 19]) represented by
the following vectors:

|Bri) = ol G) = | T (uar +varbid®p) | ail0), (16a)
'k
|Erij) = ug a0} |G) = ( 1T (uer + vk'b}ifb*_y)) a};a3;10), (16b)
B £R

|Briji) = ug’ofiop;oh|G) = ( I (e + vk'bi/b’ikf)) ag;a;ag/0),(16¢)
B'£k v

|Ex1234) 1= u;20l2101;20!;:30«’24|G)

= ( 11 (uer + vasbgb k,)) (urblb* & — vi)|0). (16d)
7

According to Eqs. (13)-(15), the excitations represented by the operators a}; are

neither fermions nor bosons. Nonetheless, some of their properties are the same

as those of particles obeying Fermi or Bose statistics: the set of vectors (16a~d),

with varying k, is an orthonormal system, the number of excitations in any state

(16a—d) can be lowered by acting on it with the operators ag;, e.g.,

aki|Erij) = ug|Erj) for ¢ # 3, (17a)

awilEgji) =0 fori#j, i #L (17b)
The vectors (16a—d) are eigenvectors of the operators ag; ki, viz.,

okioki| Eri) = |Eri), (18a)

af;iokil Bri;) = ui|Erij), (18b)

agiori| Briji) = ui|Briji), (18¢)

ogioki|Ex1234) = |Er1234), (18d)

but, as implied by these equations, in general, their eigenvalues are not equal to
the number of excitations present in the eigenvector. The excitation energies from
the ground state |G) are equal

(EwilH|Eri) — B¢ = 2Eg — €k — Y, (19a)
(Ewij|H|Exij) — Eq = 2B — v, if (4,7) € {(1,3),(1,4),(2,3),(2,4)},(19b)
(Bxsi | H|Brij) — Be = 2B, if (i,4) € {(1,2), (3,4)}, (19¢)
(Eriji|H|Egiji) — Eg = 2Bk + 6, i<j<l, | (19d)
(Ek1234| H| ER1234) — Eg = 4E5. , (19¢)
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It follows that, unlike in BCS theory, these energies are not simply additive when
counted in the k-space spanned by |Gg) = (ug + vgbjb* ;)|0) and the vectors
(16a—d). :

The structure of the subspace Mg = M_j spanned by the orthonormal basis
By consisting of |Gg) and vectors (16a—d), shows that there also exist fermion op-
erators cx, which annihilate the vector |G). To construct these fermion operators
let us introduce the unitary transformation Uz = U_j defined as

Ug == Z | Eri)(Eil +Z | Ers; ) (Erij| + Z |Eij) (Ewijil
i i<y i<l
+|Ge)(0]| + | Er1234)(0)|agsaraanaar:.
Obviously, Ug]0} = |G&) and
0= Ukakg|0> = U}kakaUle]e]O) = Cyw|le>,

0= Uka_ka|0) = Ulba—]kaU}ZU}klO) = C_kgle).
Since cg, results by transforming unitarily ag,, the anticommutation relations

between the operators axo,a},, d—ko,a* ,, are preserved by cgos, €Ly, C—ko, €2 k-
The structure of excited states (16a~d) is also preserved, since in Mg, e.g.,

|Erij) = agiag;]0) = Unagiak;10) = Urar;UgUnag; UgUk|0) = chick;|Gr),
|Ex1234) = Upaf1agoaksaks|0) = ckiChaChaChal0).

4. Minimization of the free energy

The form of the trial grand canonical density matrix pg is determined by the
structure of |G), the excited states (16a—d) and the excitation energies (19a-€). In
order to write down pg, let us define the projectors

Pro = |Ge)(Gr|, Pri = |Eri){Eril, Prij = |Erij){Erijl,

Priji = [Eriji)(Eriji|, Pri2sa = |Er1234)(Eg1234]- (20)

Since there exist two types of two-quasiparticle excitation energies, whereas the
excitation energies of one- and three-quasiparticle excitations do not depend on
the type of quasiparticles involved, therefore

4 .
po= ] Mg |Peo+ > " exp(—Ber1) Pri + exp(—Pely,)(Pr1z + Prss)
E>0 i=1 :

+ exp(—Perz)(Pr13 + Pr1a + Pras + Pioa)
+ Z eXp(;IBeIkS)Pkijl + exp(—Pemra) Pri234 | ,

i<i<i
where

3
Mg =1+ Z4exp(—-ﬂem) + 2 exp(—Pefs) + exp(—Pera).

t=1
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In terms of

flbi = f—ki = 4Mk_1 exp(-—ﬁem), 1=1,2,3,

fio = flis = 2M; exp(—Peks), fia = f-ra = Mg exp(—Pera),
po takes the form '

P0=H I:(l—th fIbZ) Pro+ 5 kalph'i' sz(P]k12+Pk34)

E>0 i=1

+— flkZ(PIklls+PI&:14+PB:23+PIA724)+ 1 Z fk3sz]1+fk4Pk1234] . (21)
i<j<i

The entropy S[po] equals
Slpo] = —(T8)™Tx(po In po)

1 4 4
= §(Tﬂ)_1 Z [(1 = fui- fﬁ;z) In (1 = fai - f;'kz)
E i=1 j=1
1 1 , 1, 1
+ferIn 7 fe1 + fealn 3 ez + feo In 5 /e + fasln g fus + fas Infea|l (22)
and the average energy in the state pg

' 4 4
Elpo] = Tr(Hpo) =2 ,w [(1,— > fai — fra— fszz) g + %Zﬁw
k ji=1

i=1

1 1 1. 1
+§fi~,z] -> <ka'1 tg5fe2t ka's) — " gprrunvE UL VR
kl

EE

4
X (1—me—fk4—fi,z) (1—ka' — fwa— f}yz) - (23)

i=1 1

The free energy F[po] = &[po] — T'S[po] is minimized by the appropriate solutions
of the equations

OF OF
=0, 2 -0, i=1,23,4 24
= (24)
and
OF
Bor = (25)

The unique solutions of Eqs. (24), expressed in terms of

4
Ak = gpk/upvi (1 =3 fari = fara - fi/z) (26)

& j=1
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and Ex = (v2 4+ A2)Y/2, are
ex1 = 2B —ex — Yk, €2 =2Er — 7k, €hy = 2Ek,

ex3 = 2FE + €, ewqa =4FEg. (27)
These excitation energies have the same form as those previously found in (19a-d).
It follows from (27) that the gap I'(8) in the excitation spectrum depends
on the form of v; and is present already at 7' > T¢. In this range of temperatures
I'(B) = inf (2lex + /2| - e — k) -
At T < T, the gap I'(B) widens with increasing A(f) and equals, according
to (27),

r(p) = if (2\/(5,c F/2)? + AL —gp — 7k> .

The presence of a gap above and below Tt in HTSC has been observed experimen-

tally (cf. e.g. [4]).
As for the density matrix pg, with egi, €, given by (27), it can be written

in the standard form

po = [Trexp(~Bho)] ™" exp(~Bho),
but hg is not expressible as Eg + Zh hijak;ong, ot BEg + ) p; hijChjChj, as it
would be in the case of noninteracting fermions or bosons.

Equation (25) takes the form

2upup v = Ap(ul — vd). (28)

The solutions ug, vg are the BCS ones given by (8), with A the solution of
the equation

At
=3 ZQM W +22 )1/2F(ﬂ;(1/]%l+Ail)1/2,llkl:7k’) (29)

resulting from (26), where
sinh 28z

F = '
Brev.2) = ot 4exp(fBz/2) cosh By + 2exp Bz + 1

Equation (29) is analogous in form to the gap equation of BCS theory, with
F(B, Eg, vk, vi) replacing tanh l,BEg, The growth and convexity properties of
F(B,z,y,7) and tanh ; Bz are s1m11ar

(A) F(B,x,y,2) is vanishing at 2 = 0, odd in z, increasing in z and concave in
z for z > 0.

(B) For z > 0,2z > |y| + 2/2 > 2,F(B,z,y, 2) is increasing in .
(C) imF(B,z,y,z)=1as B—ooifz>0,2z > |y +2/2> 2.
The inequalities in (B), (C) are fulfilled if vz = —2|eg|+0%, where |o%| < |ex].
It follows therefore that for such y; Eq. (29) is satisfied at all values of 8 > 0 by
the trivial solution Ag = 0 and if gggs > 0 is nonvanishing on a suitable subset

with nonzero Lebesgue measure in R3® x R3, a non-negative solution A(B, k) of
this equation exists for values of § above some S.. A(B, k) > 0 is increasing in
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P in the interval (B;,c0) from A(B:, k) = 0 to a finite value A(co, k), because
¢~1F(B,z,y,z) is decreasing in z for z > 0. (The proof is given in Appendix B.)

The inequalities in (B), (C) are also satisfied for ¢ > 0 by 1 =
2lex| + ok, |ok] < |ex|. The growth in B of the right hand side of Eq. (29) can
be therefore also assured by choosing vy = 2|ex| + o1 and ggg: = [g1x-(k) +
g2x+(B)]lg1x - (K)g2x+(K)], where x4 (k) = x(k)x[k : ex > 0], x- (k) = x(k)x[k :
er <0],0< g1 < g2

The free energy F|[po] expressed in terms of the solutions of Egs. (24), (25)
takes the form

Flool =Y [ve = Bx + (2Ex) ™ F(B, Ex, ve, 14)(E} — v}) (30)
E

3

1

—§ﬁ‘1 In (1 + Z 4 exp(—pPeri) + exp{—LPera) + 2 exp(—ﬂe@ﬁ)}
i=1

and for 8 € (B, o0) is minimized by the nontrivial solution of Eq. (29). (The proof

is given in Appendix C.) As a consequence, there is a second-order phase transition

at fc.
The equation for p at the temperatures T > 0, viz.,

Tr (po'Zaioak,) =n (31)
ko

assumes the form

2 [1 - E—’;F(ﬂ, Er, vk, i) — 2G(B, Eank:'Yk)] =n, (32)
E

where
Cl.z,y,7) = exp(Bz/2) sinh(By)

cosh(28z) + 4exp(Bz/2) cosh(By) + 2exp(Bz) + 1

5. The critical temperature in the one-parameter model

In the one-parameter model with ggg: = gx(k)x(k') for k # k' the solution
Ag(B) of Eq. (29) has the form Ag(B8) = A(8)x (k). Equation (29) for the nonzero
solution A(f) simplifies to _

_ & de
=0, {+vey+ a2}

<k (8, {fe+ e/ + 22} e 4200 (33)

The temperature 8. therefore satisfies the equation

8h. dz
2= g”/_,sﬂc |z + (1/2)B7(Bz 12))|

X F [1, |z + (1/2)B.7(8:z)], = + (1/2)Be7(8 ), Bc'v(ﬂélm)] (3
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If 6. > 1 and the integrand on the rhs of Eq. (34) vanishes sufficiently fast
as £ — =00, then

~ 8B dz’
(Bed)" exp (/_wc o+ (DB (B )]

< F [L, 2" + (1/2)8er(85 "), o + (/2B (85 2'), Ber(B5 )] )

. _ llm x_lexp(/w d{l}l —

XF [L,|o' + (1/2)er(8 ), &' + (1/2DBer (B a'), Ber(B)] ) = e,
Thus
2 _1n(ese)
gp

2
"l =6cyex (——) .
B y €XP 9

T. can be therefore increased to exceed Ty(pcs) by allowing |z + v(z)/2|, where
v(z) = —2|z| + o(z), to assume values sufficiently small on a sufficiently large
interval above zero. Similarly, if y(z) = 2|z| + o(z) with |o(2)| < 2| and ggg' =
[g1x— (k) + gax+(B)[g1x~(K) + g2x+(¥)], then T can be raised by allowing
|# 4+ v(z)/2| to assume sufficiently small values on a sufficiently large interval
below zero.

If y(z) = 0, then T < Te(Bcs), because for such y

B! = cobexp [—(gp) ") (35)
with

T ¢, ,_ysinha’coshz’
¢ = lim =" exp </0 do'z (cosh z’ 4+ 1)?

and

< lim z=lexp (/ dx’m"ltanh(m’/2)> = cpcs = 1.14. (36)
T=r 00 0

The inequality T < Typcs) for v = 0 shows that interaction V' is weaker than
VBcs, which agrees with the weakness of the isotope effect in HTSC and confirms
the, generally accepted, decisive role of the pair-binding potential W in raising T
in these materials, e.g. [20-22].

Consider now Eq. (32) for u if ggg: = gx(k)x (k') for k # k'.In the range of
low temperatures (large 8) the term Y 2G(8, Ek, vk, v%) on the left hand side of
Eq. (32) is negligible compared to the first two summands. The resulting simplified
equation is not solvable in general. For 4; = 0 the solution is p = up.

Another difference between the thermodynamics of H and Hpcg is in the
dependence of the ratio A(8)A(co)~! on the temperature. In BCS theory this
ratio depends exclusively on T'T1. This is not the case in the present model due
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to the fact that § enters into F* through BEg, Svk, Byi and not exclusively through
BEyR. We have examined to what extent the plot of A(8)A(c0)~? resulting from
Eq. (33) for y(¢) = —2|e| (in which case conditions (B), (C) are fulfilled and the
gap in the excitation spectrum equals I'(8) = 2A(B)) can be adjusted to fit the
experimental data on A(B)A(co)~! determined on two types of junctions for the
BSCCO superconductor and depicted in Refs. [23, 24]. For v(8) = —~2le|, Eq. (9)
for A(oo) takes the form

4
9P = 48Bca-T+arcsinh(468ca-1)’

where a = 2A(00)f, and Eq. (34) reduces to

_ 0 sinh(4z)
2=gp (/_wc 2z[cosh(4z) + 4 exp(z) cosh(2z) + 2 exp(2z) + 1)] de

8B dz
A ex_p(—m)lz) | (%)

Given a, Egs. (37), (38) allow us to determine gp and 6f:. For the choice
a = 2.5, similar as in other fitting methods (e.g. Ref. [24]), one obtains §8. = 7.17,
gp = 0.2738. The resulting graph of A(8)A(c0)~1, with 2A(c0) = 1.81 x 1072 eV
for T, = 84 K [24], is depicted in Fig. 1 and compared with experimental data on
BSCCO of Ref. [24]. Another comparison with the A(B)A(c0)~! data of
Refs. [23, 24] for BSCCO and T, = 85 K, with a = 2.025, 66. = 124.783,

1.2 F
o)
10 o] O
(o)
o o)
ok ———theoretfit
O experiment

T
3— 06 |-
1 AM()Be=5

04 Te =84K

02t

00 | —t et ' —

"o 2 40 L 0 o O

Fig. 1. Temperature dependence of A(f)/A(co) for a BSCCO/BSCO/Au tunnel junc-
tion. The solid line is the A(B)/A(cc) function resulting from Eq. (33) fitted to-
a = 2.5, T. = 84 K. Experimental data (o) after Ref. [24].

(37
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034
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0.1+

0.0 T T — T 4 T N U
0 20 -40 60 80
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Fig. 2. Temperature dependence of A(8)/A(oc) for a BSCCO/Nb junction. The
solid line is the A(B)/A(co) function resulting from Eq. (33) fitted to a = 2.025,
T. = 85 K. Experimental data (e) after Refs. [23, 24].

gp = 0.016, 2A(c0) = 1.48 x 102 eV is given in Fig. 2. For the crude choice
v(e) = —2[¢|, agreement with experiment appears to be satisfactory in both cases.
Another confrontation with HTSC experimental data can be obtained by
comparing the values of 2a = 2I'(00)/ksT. In HTSC this ratio assumes values
between 2.4 and 11 [24]. In the present model, for v(¢) = —2|¢|,2a = 5 and 4.05
in the two cases discussed above. In general, for this choice of ¥(g), 2a depends
on the value of gp according to Eq. (37) and
lim2a =0 as gp — 0, lim2a = oo as gp — oo.
Thus, all non-negative values of 2a are admissible and the range [2.4, 11] observed in

HTSC is covered by the present model. Further properties of the system described
by H are under investigation.

6. Asymptotic exactness of the variational procedure for H

In Ref. [10] Czerwonko developed a method of evaluating the infinite-volume
limit of free energy density for a Fermi gas with BCS attraction and repulsion
between fermions with equal momenta and opposite spins (described by W with
7% > 0). His method is applicable to the Hamiltonian H defined in Eq. (5) with
g of the form ggg = AL~3gggy/, L® denoting the volume of the system, and
allows us to prove the asymptotic equality

Lllrrgo(;ﬂLs)"llnTrexp(—ﬂH) = Lan;o ng'i)nL‘Sf[po], (39)

where F[po] is given by the expression (30). In order to carry out this proof, let us
first note that the sum of diagonal terms in the potential V with ggg: = AL=3gz gy,
viz.,

AL™3> " grgrbib® gborbe
E
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is uniformly bounded in L if gj is square-integrable on R3:
D7D orowbibtebosbe || < WL Yook < (20 [ g%
'k E R3

and therefore does not contribute to L=3InTrexp(—BH) in the limit I — oo,
n — 00,nL ™3 = d. This form of ggg thus fulfils asymptotically the requirements
imposed in the Introduction.

Let us write H, with ggg = AL~3grgg, in the form

H= }:epnpa ~AL73B*B + Zypn,,+np_,
: po P

where B =5 . geb_pbe. H can be rewritten as

H= enps — AL3(B* + B)(B) + Y_ Tpnpsnp— + AL™3(B)?

PO P
—A\L=3(B* - (B))(B — (B)) = H' — \AL=3(AB*)(AB), (40)

where

(B*) = (B) = [Trexp(—AH")] "} Tx[B exp(-BH")], (41)

AB = B—{(B). The gauge invariance of H admits the choice (B) = Re(B) = (B*).
The thermodynamical perturbation method [10, 25-29] for the statistical sum
Zyg = Trexp(—fH) then yields

Zyg = ATrexp(—BH'), where Llim L73InA=0. (42)

Thus in order to evaluate imL=31In Zx, as L — oo, it suffices to diagonalize H'.
This Hamiltonian can be written as

H'=) Hy,+AL%(B)?

>0
with
Hp =€ ) (Mo +npo) — 229 L=3(B)(bpbL, + bpb—p)
+7p(np+np— + nopinp-). | (43)
Hy acts in the 16-dimensional space of states
(ap4)"(ap_)""(aZpy )™ (a2, )™(0), - (44)

where n; = 0,1,i = 1,2,3,4. All the states (44), except for the two with n; = ny =
n3 = ng = 0 and ny = ny = nzg = ng = 1, prove to be eigenstates of Hy. Due to
the commutation relations fulfilled by Hp, viz.,

[H,,,ZS] =0, [Hp,4d]=0,
where

28 = Z Z ONapo, Ao =1Nps—"N_p o, (45)

a=+10==%1

denote the spin projection and two seniorities A4, A_, the diagonalization of Hj
can be carried out independently in the invariant subspaces of Hp with fixed
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eigenvalues of 25 and A4, A_. This procedure reveals the following eigenstructure
of Hp:
Eigenvalue of

Eigenvector Hy 28 Ay Ao
1. |1000) €p 1 1 0
2. [0100) €p -1 0 1
3. |0010) €p 1 0 -1
4. 10001) & -1 -1 0
5. |1010) 2ep 2 1 -1
6. |0101) 2¢p -2 -1 1
7. |1001) 2e, 0 0 0
8. |0110) 2e, 0 0 0
9. [1100) 2ep + 7 0 1 1
10. |0011) 2ep + 7 0 -1 -1
11 j1110) 3ep + 7 1 1 0
12. |0111) 3ep + 7 -1 -1 0
13. |1101) 3ep + 7 -1 0 1
14. ]1011) 3ep + 7 1 0 -1
15, up|0000) + vp|1111) 2ep+v,—2E, O 0 0.
16. up|llll) —v,|0000) 2ep+7,+2E, 0 0 O

2
P

Ay = A3, (B). | (46)

Evaluation of Zg/ = Trexp(—BH') is now a matter of some simple algebra. One
obtains

Zg = exp(~ABL~3(B)?) H 2exp(—2ﬂup)‘
>0

| x [cosh(28Ep) + 4 exp(Bv,/2) cosh Bup +2exp(By,) + 1] (47
and Eq. (41) for (B), written as '

where u2,vZ are given by Eq. (8) with

0 ,. -
—aj llIlZH/ =L 3<B)2

takes the form

| |
5172 2 A (BY By (B, Ep, vy, 1) = (B) (48)
4

and reduces to Eq. (29) with gpp = AL3g,gp, for Ap defined by Eq. (46). Using
Eq. (48), one finds that the free energy F = —8-11n Zy, is equal to F[po] given
by the expression (30). This proves, together with Eq. (42), the equality (39)

and establishes asymptotic exactness of the minimization procedure carried out in
Secs. 2-4.
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7. Conclusions

We have demonstrated that the Fermi gas with the Hamiltonian H is asymp-
totically solvable in the infinite-volume limit. The ground state (6) is a BCS-type
product state of bound quadruples, the excitations are fermions but excitation
energies are not simply additive. The system exhibits a 2nd order phase transi-
tion: at T" > T only free fermions and free bound pairs are present, at T < T
the system behaves like a gas of fermion quasiparticles with energies which are
not additive. A gap is present in the spectrum which depends on the form of the
pair-binding potential . The transition temperature T¢ also strongly depends on
W and exceeds Tyes) if |€ + v(€)/2| is sufficiently small in a sufficiently large
range. The experimentally measured temperature dependences of the gap param-
eter of the BSCCO superconductor have been compared with the theoretical de-
pendences resulting from H with W = — 54 2|ex|ney+ne—, adjusted bandwidth
§ and zero-temperature gap parameter 24(co) = 2aB7! for two values of 2a,

viz., 2a = 5, 4.05. The theoretical curves agree qualitatively with the experimen-

tal ones. Further questions relating to the Hamiltonians A and H’, in particular
quantitative agreement with experiment for other choices of y(¢), are under inves-
tigation.

Appendix A
For the 1-parameter model with v = 2yAx,y > —1, Eq. (10) assumes the

form
nie e(l+7)—p
2+ / (1 - ) de=n
Ak%;_l, ? s {le(1 +7) — p? + A2}1/2
and after performing integration simplifies to

d 2=n+p(147)7?
Ap<p

x ({lmr + 6L+ 0% + A7} — {[wy — 80+ + az)?)

with the solution g < pp if =1 < v < 0 and g > pp if ¥ > 0. For v = 0 the
solution is p = pr. o
The gap equation (9), for the same form of v, as assumed above, is

pté .
2=gp [ de{le(t+7) - i+ 4%}
On performing integration

/(m2 + 1)~Y/2dz = arcsinhe

1/2

and solving for A, one obtains the solution (11).

Appendix B

In order to prove that ~'F(B8,z,y, z) is decreasing in z for z > 0, let us
first note that F has the form
sinh(2pz)
F ) b ) =
(8:2,y,2) cosh(28z) + go(B, ¥, 2)
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and therefore, as a function of z, has the same growth and convexity properties as
tanh Bz. For any function F(z) with these properties, (z~1F(z)) < 0, as can be
seen from the Taylor expansion

F(s) = F(0)+2F/(e'), 2'€(0,2), F(0)=0
and concavity of F for z > 0: F'(z) < F'(2').

Appendix C

For F[po] given by Eq. (30)

a}' 1 aF(ﬂ;Ek;Vk)')’k) ] < Vl?)
—_— = — F(B, Ex, v, 1—--=£]. C.1
55 = 3 Ep 98E, (8, B, vk, k) 3 (C.1)
Since V,?E;2 < 1, the proof of the inequality

FlAg # 0] < F[Ag = 0]

can be carried out by demonstrating that

31361;"; (BER)"1F(B, Ex, vk, 7k) < 0. ©2)

This has been done in Appendix B.
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