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Direct and inverse muon transfer between atomic orbits of muonic hy-
drogen isotopes is considered in the WKB approximation. The correspond-
ing cross sections, calculated as functions of collision energy, are different
above the thresholds for the inverse transfer and approach common limits
depending on the principal quantum number and hydrogen isotopes. The
comparison of results obtained by integration over impact parameter and by
summation over angular momentum is also presented.

PACS numbers: 34.60.+z

1. Introduction

The study of kinetics of muonic hydrogen in hydrogen isotopic mixtures is
an important problem of muonic atom physics, being connected with the investi-
gation of the weak interactions in muon capture by hydrogen isotopes [1]. Some
other fundamental aspects of theoretical physics, e.g. charge invariance of strong
interactions [2], and astrophysics [3] are involved here.

The main processes that determine the μ-atomic cascade are the subject
of the intensive experimental and theoretical investigation by the use of various
methods of atomic physics. Certain criticism arises incidentally [4] concerning the
methods of theoretical analysis, e.g. with respect to the Coulomb deexcitation  .

process.
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Muon transfer belongs to one of the basic processes which determine the
cascade of the excited muonic hydrogen atom. It has been analyzed in numerous
papers since 1962 [5]. In the first paper concerning the muon exchange in ex-
cited states of muonic hydrogen [6] the Landau—Zener approximation [7] was used.
A method of a complex internuclear distance R [8] was used in Refs. [9-11] for
description of μ-atomic processes. An attempt to compare the μ-atomic cascade
calculations with experimental data was given in Ref. [12].

In this paper we present the direct and inverse transfer rates in the reactions

where h, h' = p, d, t are nuclei of hydrogen isotopes (h' being heavier than h) and
n is a principal quantum number, calculated by different quasiclassical methods.

2. Methods of calculation

Muon transfer (direct and inverse) in excited states of muonic hydrogen (1)
was considered in the framework of WKB approximation in Refs. [10, 11]. However,
the more accurate calculation of the inverse transfer (which was first calculated in
Refs. [11]) near the threshold is needed. The process (1) is determined by a series
of complex branch points Rc , located equidistantly in complex R-plane [8], that
connect the initial and final molecular terms of the two center Coulomb problem.
The muon is transferred to another nucleus at the internuclear distance close to R.

The cross section of the reaction (1) in the framework of WKB approximation
is given by

where p is the impact parameter and P is reaction probability [8, 10, 131

with the Massey parameter

The contour C Εoes round the branch point Rc, closest to the real axis;
is the relative radial momentum of colliding atoms,

where ε is the collision energy at infinite R and Μ is the reduced mass: Μ = M0/m,
Μ 1 = Mh-1 + Μ ' 1 , m -1 = mμΡ 1 +Miß, 1 with masses of muon and nuclei of hydro-
gen isotopes mμ , Mh, Mho , respectively. Μ,-, is the mass of the hydrogen isotope of
muonic hydrogen in the input channel (we use the μ-atomic units: e = ħ = m = 1).
The potential U (being a complex function of R on different Riemann's surfaces
of the complex R-plane) and the corresponding branch points, Rc [8], have been
calculated with inclusion of electron screening correction [6]. The collision energy,
ε, is counted from the R → ∞ limit of the potential in the input channel. The
maximum impact parameter is determined from the requirement that the radial
momentum should be real on the trajectory, i.e. for R? ReRc , where the transi-
tion takes place. Actually only the momentum corresponding to the left hand side
of Eq. (1) is important for determination of p2max for direct and inverse reactions.
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It is clear however that integration over the impact parameter in Eq. (2) is
justified when the number of partial waves included is high enough [14]. When it is
not the case, one has to sum over partial waves using the quasiclassic phase shifts
for elaStic croSs section or transition probabilities for inelastic reactions. Then the
cross section is given by the following formula:

where k = √2Με and I is the relative orbital momentum of muonic hydrogen and
target atom (molecule). The reaction probability Pl could be expressed by Eq. (3)
with replacement of δ(p) by δl. The Massey parameter δl is determined by Eq. (4)
with the relative radial momentum p = √2Μ(ε = U) - (l + 1/2) 2/R2 . In order to
obtain the reaction cross section for a given principal quantum number n, we sum
cross sections (5) corresponding to all attracting molecular terms labeled by the
same n. The lmax were determined in the analogous way as pmax

As follows from Ref. [15] the agreement of the calculated elastic cross sections
obtained by summing over partial waves and by integration over p is very good,
especially for ε > 0.1 eV and n < 6. In fact lmax for elastic scattering change from
several for thermal energy to about 100 for large collision energy (ε 10 eV) [15].
On the other hand, lmax for direct muon transfer (considered for only n < 5)
was found to be _< 15 in Ref. [9]. Therefore, cross sections for processes (1) are
calculated in this paper using Eq. (5) for comparison.

The screening of the nucleus charge by the atomic electron was shown to be
very important for μ-atomic processes at low energy [16]. The screening effect in the
first order of perturbation theory was first calculated in Ref. [17]. The alternative
approach to the electron screening was also presented in Refs. [18, 19]. It was
shown that inclusion of electron screening in the elastic scattering of the muonic
hydrogen in the ground state leads to the increase in the cross section by an order
of magnitude for ε «  1 eV for the lowest partial waves. Therefore, ground state
muonic hydrogen scatters mainly on electron shell instead of nucleus especially in
non-resonant cases [16]. Electron screening in elastic scattering of excited muonic
hydrogen must be taken into account because the leading term in the unscreened
interaction potential is proportional to 1/R2 and the corresponding cross section
diverges.

On the other hand, the muon transfer is due to collision with a target nucleus
and the inclusion of the electron screening in the muon transfer in excited states
reduces the corresponding cross section. Namely, the electron screening leads to
the barrier in the effective potential U + εp 2 /R2 [6]. As a result, the maximum
impact parameter, and hence the reaction cross section decreases, especially at low
energies.

For ε > 1 eV the influence of the screening gradually decreases with increas-
ing energy. The screening correction was calculated in the first order of perturba-
tion theory [6]. One should note however that for high n 10 such a screening
correction may be not accurate enough, because the muonic atom dimension be-
comes comparable with the atomic one and terms corresponding to the higher
order of the perturbation theory should be taken into account together with the
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molecular structure of the target. At the same time, as our results show, the inverse
transfer compensates entirely the direct one in the initial stage of the μ-atomic
cascade, where the collision energy is close to cα. 1 eV, the energy of the nascent
muonic atom. For this reason the screening effects seem to be not very important
for large n. Precise determination of pmax or lmax is especially important for cal-
culation of cross sections and reaction rates, λ, in the energy region near threshold
of the inverse transfer. Reaction rates for inverse transfer obtained in Ref. [11] are
valid for energies exceeding the corresponding thresholds. The n-dependence of
inverse transfer rates presented in Fig. 4 of Ref. [11] is correct with the exception
of the pd case at ε = 2 eV and n = 8, where the corresponding transition rates
were overestimated due to incorrect determination of pmax.

3. Results and discussion

Reaction rates for the inverse muon transfer at the vicinity of the corre-
sponding thresholds obtained by both methods described above are presented in
Figs. 1 and 2 of the present paper for the first time.

Direct transfer rates also shown in Fig. 1 coincide with the corresponding
curves in Fig. 2 of Ref. [10]. The results for n > 8 differs, however, from the ones
presented in Fig. 3 of Ref. [11] due to the computer program error in Ref. [11].

As seen from Figs. 1 and 2 the inverse transfer compensates the direct one
for ε > ε t , where ε t is the threshold for the inverse reaction determined by the
resonance defect ΔU = (μ2 = μ1)/(2n 2) = 48n -2 eV for dt, 135n -2 eV for pd, and
183n -2 eV for pt (μ ι and μ are reduced masses o the light and heavy muonic
atoms, respectively). The larger is n the smaller is ε t , so the total compensation
could occur only in the initial stage of a muonic atom cascade, i.e. for large n.
However, to obtain a reliable conclusion about the influence of the inverse muon
transfer on the kinetics of muonic hydrogen in a certain isotopic mixture, e.g. a
Monte-Carlo simulation is needed.

Reaction rates for the inverse muon transfer obtained by two methods are
very close, especially for large ε and n, where lmax is large (see Table). For
the lowest energy and n, where l max is small, the difference is also small. The
non-monotonicity of the direct transfer rates in H—D and Η—T mixtures for
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n = 2 in the region ε < 0.02 eV (see Fig. 2) is explained by increasing influence of
1 = 1 partial wave with increasing collision energy.

The results for the direct muon transfer presented in this paper do not con-
firm the statement of Ref. [9] about lmax < 15 for n < 5. Furthermore, our reaction
rates for (dμ) n + t -^ (tμ)n + d transfer are about 1.5 times greater than those
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of Ref. [9] for the low collision energies (ε < 0.01 eV) although they practically
coincide in the energy range near the maximum (with exception n = 2, where
they are greater by about 50%). Thus it is clear that the energy dependence of the
cross sections presented in this paper and in Ref. [9] are different. Any explanation
of this disagreement cannot be given here because details of calculation are not
presented in Ref. [9] .
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