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Angular differential cross-sections for the formation of He 0 in collision
between fast He+ ions are calculated using distorted wave Coulomb—Born
approximation. The interaction potentials satisfy necessary Coulomb bound-
ary conditions. In absence of any other theoretical results the present results
are compared with the existing experimental data.

PACS numbers: 34.70.+e

1. Introduction

Charge transfer in collision between positive ions is of theoretical and ex-
perimental interest being fundamental processes in astrophysical and laboratory
plasmas, including Tokamak plasmas. Total cross-sections for charge exchange in
one and two electron systems

respectively, have been investigated since many years, both theoretically [1-16]
and experimentally [17-21]. Good agreement between theory and experiment was
achieved. But the theoretical works on angular distribution of the scattered beams
are scarce [22, 23] while first ever attempt on the experimental investigation on
reaction (2) is by Giessen group [24] in Germany. The differential cross-section
gives more sensitive probe by which one can have deep insight into the collision
processes. Charge changing collision between He+ ions in reaction (2) represents
an unique ion-ion collision system which can be represented by hydrogen type
wave function, the relative motion being distorted by Coulomb repulsion in the
incident channel.
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In this paper we formulate an expression for angular differential cross-section
(ADCS) for the electron capture in the reaction (2). There has been as yet no the-
oretical work on this process. We use Coulomb-Born approximation with the total
interaction potentials as in the paper [23] for reaction (1). The post interaction
includes two (e-α) attraction terms and one (α-α) repulsive term. The prior form
of the interaction contains interactions between (α—α), (α-e) and (e—e). (α-α)
term is found to dominate both the channels. As such the post-prior discrepancy
is small. The potentials are so chosen that the boundary conditions in the asymp-
totic limit are satisfied. This causes modification in the effective charge of the
interacting systems. The Taylor series expan8ion of the potential terms provides
convenient tools in writing the interaction potential terms in exponential forms.
The exponential containing the momentum operator, provides translational factor
associated with the relative motion.

Coulomb—Born approximation with distorted wave function is used in
Ref. [23] to calculate the ADCS for the reaction (1). The results differed widely
from those by Winter [22], but the post-prior discrepancy came out to be very
small. However, there was no experiment on reaction (1) till then. In this paper
we use the same methodology to calculate ADCS in the reaction (2) for which
preliminary experimental results are available [24]. As in the experimental data
[24], the maximum contribution for ADCS in (2) comes from a very small angular
range (00 to 10) in the forward direction. ADCS decreases very rapidly with angle
up to 0.20, after which it becomes almost constant. We compute ADCS with the
post and the prior interaction form of the potential. The difference in the ADCS
for post and prior interactions exists in the forward direction which however is
reduced appreciably as angle increases to 0.40. This difference may be due to
non-orthogonality between the initial and the final wave functions. In absence of
any other theoretical result, the present results are compared with the preliminary
experimental data by Giessen group (Fig. 2).

2. Mathematical formalism

The charge transfer reaction under consideration is He+ + He+ → He0 +
He++, where the projectile and the target are the helium ions [He+(1s)].
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In Fig. 1 RA, RB are the coordinates of the nuclei of the He+ projectile (A)
and the target (B) respectively. r1 and r2 are the coordinates of the two electrons
e-1 and e2 respectively. RA1 and RB 2 are the coordinates of the centre of mass of
(αΑ-e-1) system and (αΒ-e-2) system respectively, where is the nucleus of the
helium atom.

The total potential energy of the system is

The operator expressions for the kinetic energies of relative motions of the inter-
acting systems in the initial and the final channels are respectively

where μA1, μΡΒ2, μi , μf are the reduced masses associated with the relative co-
ordinates rA1, r132, pi, pf respectively (Fig. 1), and V's are with respect to the
suffixed coordinates RA, rAn , rBn (n = 1, 2), p i and ρf . M and R are respectively
the mass and the CM coordinate of the interacting system.

The total Hamiltonian of the system in the initial channel is

where Η0i is the unperturbed part of the Hamiltonian and V is the perturbation
part.
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where the differentials are with respect to the suffixed coordinates rA1, rB1
and D; .

Similarly, Hamiltonian in the final channel can be written as Η = Tf+U = Η0f+Vf ,

where H0f is the unperturbed part of the Hamiltonian and Uf is the perturbation
part

As pi and ρf tend to the asymptotic limit, each square bracket in (8a) and (10a)
becomes identically zero. The interaction potentials 14 and [/f vanish in the asymp-
totic limit, and eventually satisfy boundary conditions.

Since me/MA « 1, we ignore the terms containing me /MA as a factor in
the interaction potentials 14 and Vf in (8a) and (10a). Using Taylor's expansions
in (8a) and (10a) as in [23], and writing O p in terms of momentum operator p,
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we get for 14 and l/

Eigenfunctions of the channel Hamiltonians H0i and H0f are respectively,

where φHe+(1s)(rΑ1), φ2e+(1s)(rΒ2), and φ(rΒ1, rΒ2 ) are the hydrogen type wave
functions of the projectile and the target He+(1s) ions and He(1s 2 ) atom, respec-
tively. Ψrel.(Ki, pf) is the eigenfunction for relative motion of the colliding system
in the initial channel, and in the final channel φfrel.(Kf

, pf) is a plane wave. Looking
to the expressions (7), (9) of the unperturbed Hamiltonians H0i and H0f one finds
that the effective nuclear charges for the relative motions are (ZA — 1) and (ZB -1)
in the incident channel and ZA and (ZB - 2) in the final channel. Since for he-
lium ion ZA = ΖB = 2, the wave function for relative motion φi rel (ο) is Coulomb
distorted whihe in the final channel the corresponding wave function φfref (pf) is
undistorted. The Coulomb distorted wave function

where n = (ΖΑ - 1)(ΖΒ - 1)μi|Κi| and φfrel.(pf) = [1/(2π)3 / 2] exp(-iKf . Pf),
where Κi and Kf are the relative momenta of the initial and the final channels,
respectively. φfreΙ (Kf , pf ) being a plane wave, the momentum operator P in (12)
and (13) satisfies the equation

The transition matrix element Vfi prior(post) of the prior (post) interaction Vi (Vf)
between the initial state ψ and the final state ψf, is obtained in the Coulomb—Born
approximation

We use both the prior and the post form of the interaction potentials to
calculate the ADCS for charge transfer between He+(1s) and He+(1s) ions to
produce He(1s2 ) atom in the ground state. The integrations involved are of the
form
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Using (19), (19a) and (19b) in (12) and (13) we obtain from (18) the inter-
action matrices for the prior and the post form of potential

The integrations are shown in Appendix.

3. Results and discussions

The angular differential cross-section for charge transfer in the CM scattering
angle is

We calculate the cross-section with both the post and the prior form of inter-
action potential. Usually, in charge transfer reaction, the energy and momentum
transfer are very small. With no target recoil, in the projectile energy range under
consideration, we find from (11A), |δ 2 /|δ1| « 1, and approximate φ(ν) = 4π/δ1.
The maximum contribution to the reaction comes from the small angular range in
the forward direction. Correlations [25] are taken into consideration in the choice of
the He(1s 2 ) wave function in the final state. For collision energy 10 keV (CM) the
maximum contribution to ADCS comes from the range 0° to 0.40 CM-scattering
angle. The results are compared with the preliminary data (Fig. 2) of the experi-
ment [24] by Giessen group.
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4. Conclusion

In this paper the Coulomb-Born approximation with Coulomb distorted
wave function is used to calculate ADCS for the formation of He0 in collision
between He+ ions. A total interaction potential is considered. The post interaction
potential contains (α-α) and (α—e) interaction terms, in addition to which, the
prior interaction potential contains (e-e) term. Contribution from the (α-α) term
dominates the ADCS in both the channels. Though contribution from the (e-e)

term is much smaller than that from the (α-α) term, yet the same is larger than
that from (α -e) term. As such, ADCS in the post interaction channel is slightly
greater than that in the prior interaction channel. However, beyond 0.50, there
is no post-prior discrepancy. The necessary boundary conditions, for asymptotic
vanishing of the long range potentials, are achieved (8a), (10a).

In the experiment [24] as the absolute primary beam density profile in two
dimensions could not be measured, the results were interpreted as preliminary and
eventually some error in the measurement of ADCS is not unlikely. In principle, the
present results for differential cross-section dσ/dΩ are plotted as a function of the
CM-scattering angle at 10 keV. CM energy shows similar characteristic variation
as obtained in the experimental results [24]. However, more such experiments are
necessary to validate the present theoretical approach.

Appendix

The detailed calculations for Vfi(n) are given below. The wave functions for
He+(1s) ion in the initial state and that of He0 in the final state are respectively
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The integrals Vfi(n) in (18), for n = 1 to 3, are shown below. Since me /MA
from (6) one can approximate RA1 = RA and RB1 = RΒ12 = RB, leading to the
fact that pi = ρf = p. On using atomic units
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The integration over x in (9A) is carried out using trapezoidal rule with
sufficiently small mesh Δx.
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