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Optical transitions in small band offset superlattices are studied within
the framework of the nearly free electron approximation, in which the weak
superlattice potential is treated as a perturbation. Interband selection rules
are derived for transitions involving conduction and valence band states
at the superlattice Brillouin zone center and the zone edge. It is found
that a number of new transitions can occur in such small-offset superlat-
tices due to wave function mixing of different subband states. The effect of
the effective mass on the optical transitions is also discussed. The theory
is used to explain the results observed in magneto-optical absorption ex-
periment in ZnSe/Zn1-xMnxSe small-offset superlattices. Furthermore, the
nearly free electron formulation is fouud to be in excellent agreement with
rigorous multi-band numerical calculation on superlattices involving small
band offsets.

PACS numbers: 78.66.-w

1. Introduction

Electronic properties of semiconductor superlattices (SLs) are determined
primarily by the differences in the conduction and valence band edges at the inter-
faces between constituent layers. (i.e., the so-called "band offsets"). Studies of SLs
carried out so far have focused primarily on structures with relatively large band
offsets (for a comprehensive discussion of electronic band structure of quantum
wells and superlattices, see Ref. [1]), where electrons and holes are strongly local-
ized by the confining potentials of the wells. Motion of the confined states along the
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growth direction is in such structures quantized into fairly narrow "mini-bands",
which are often treated simply as discrete energy levels. Because of such selective
quantization of motion in the growth direction — as compared to motion in the
layer phane — quantum wehls and superlattices described by large band offsets
behave essentially as two-dimensional media.

In contrast, the present paper will focus specifically on SLs in which the
band offset is small in both bands. Our interest in such structures is motivated by
the fact that the analysis of SLs with small offsets will permit us to describe the
physical phenomena which occur in the region where the superlattice just begin to
form. This transition region, where the SL transforms from a 3D to a 2D medium,
may be referred to as the intermediate dimensionality regime.

Whihe such a regime of dimensional transition is of considerable fundamen-
tah interest, it is surprising that so far little attention has been devoted to this
subject† [2, 3]. Our objective, then, is to carry out a detailed investigation of the
ehectronic band structure of SLs with very smahl offsets in various geometries, with
special attention to optical transitions which result from such band structure. We
wihl show that, in sharp contrast with large-band-offset SLs, in SLs with smahl
offsets the energy subbands become very wide and are separated by very narrow
minigaps. Such subbands are localized not by confining potentials, but by interfer-
ence effects among Bragg-reflected electron waves. Using the nearly free electron
(NFE) approximation [4], we will derive analytic expressions for the energies, the
wave functions, and the effective masses at the minigaps of small band-offset SLs.
We will then use these results to discuss the optical properties of such structures,
with emphasis on selection rules and optical transition intensities. As wihh be seen,
a large number of new opticah transitions will emerge when the band offsets are
small due to the wave function mixing of different subbands. Furthermore, transi-
tions which occur at the Brillouin zone center can be readily distinguished in this
regime from those occurring at the zone edges.

The organization of the paper is as follows. In Sec. 2, we identify some of the
real physical systems in which small-offset processes can be observed and studied.
In Sec. 3, we present the NFE approximation by which we approach the probhem of
small-band-offset SLs, and we describe the basic properties of their band structure
and wave functions in analytical form. In Sec. 4 we discuss the optical behavior
of small-offset SLs. In Sec. 5 we compare the results cahcuhated with the NFE
approximation (which, being analytical, has the advantages of keeping the physics
in focus) and those calculated numerically using a full 8-band k . p model. These
comparisons are also used to establish the himits of applicabihity of the analytical
NFE formulation.

2. small-offset superlattices
2.1. Are small-offset structures realstic?

We begin by defining the small-offset SL. The term "small-band offset" is
relative, and will depend on many parameters, such as the widths of wells and

t Some of the unique properties of small-offset superlattices have been pointed out in Ref. [2].
Indeed, the present study was 1argely motivated by the insights and experimental observations
reported in that work.
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barriers, and on the effective masses. This will be discussed quantitatively at the
end of Sec. 3. As a practical guide, however, we will define the offset as small when
it is below about 3% of the energy gap of the barrier material.

Το fabricate a small-offset superlattice, one obvious approach is to use two
materials that differ only slightly from one another. GaAs/Ga0.05As and
ΖnSe/Ζn0.95Cd0.05Se can be safely expected to have very small offsets. Another
procedure is to exploit "bowing" of the energy gap with composition found in
certain ternary alloys. For example, the energy gap of Zn1-xMnx Se first decreases
with x, and then increases rapidly to values far exceeding the band gap of ZnSe [5].
Thus there exists a Mn concentration x (x 0.05) where the Zn1- x Mnx Se and
the ZnSe gaps are exactly equal. Since ΖnSe/Ζn1-x Μnx Se is a common-anion
combination, the valence bands are expected to remain closely aligned, and so
then must be the conduction bands at this specific concentration [2].

A much wider spectrum of small-offset SLs can be fabricated using ternary al-
loys as both constituents. For example, combinations of Cd 1 -xΖnx Te/Cd i -yΜgy Te,
Zn1-x ΜnxΤe/Ζn1-yΜgyΤe, or Zn1 -xΜnxSe/Ζn 1-x Μgy Se with appropriately cho-
sen values of x and y will result in small (or even zero) offset SLs [3]. The point
here is not to list all such possible combinations, but rather to demonstrate that
small-offset SLs can indeed be realized in practice.

We finally note, on intuitive grounds, that SLs with very narrow wells can
also be viewed as small offset SLs even when the absolute value of the band offset
is large. States in such SLs move up in energy as the well width becomes narrower.
In the limit of very narrow wells (say, L < 25 Α or so, depending on the effective
mass) the ground states of the SL will be "pushed up" very close to the top of
the well. We shall see that in this situation (which includes the important family
of short-period SLs) the SL will also behave as a "small-offset" system. These
plausible arguments will be demonstrated at the end of Sec. 3.4.

2.2. Tunable band-offset structures

The effect of any parameter on the physical properties of a system can best
be studied by varying that parameter. Thus in the case of small-offset structures,
one could grow a series of GaΑs/Gaι-xΑlxΑs SLs for different values ofx(e.g.,
x = 0.01, 0.02, 0.03, etc.). The fabrication of specimens with offsets progressing in
such minute steps (on the scale of 5 meV or so) is, however, quite problematic.
Even if we could control x to this degree, it is unlikely that one would be able to
control the geometry of repeated growths to the precision required by this very
fine progression of energies.

It would be ideal to "tune" the offset in the same structure. The unique
properties of diluted magnetic semiconductors (DMSs) provide just such an op-
portunity, since their band gap undergoes enormous Zeeman splittings when an
external magnetic field is applied [6]. For example, the Zn 1-xΜnx Se band gap can
be varied by as much as 100 meV in a magnetic field of 5 tesla. This feature can
be directly exploited for varying ("tuning") the band offset in SLs comprised of
alternating DMS and non-DMS layers, simply by applying a magnetic field. The
phenomenon of such band offset tuning has in fact already been experimentally
observed in many DMS SLs, e.g., in Ζn1- x Mnx Se/ΖnSe [7], Zn 1- x FeSe/ΖnSe [8]
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and Cd1-xΜnxTe/CdTe [9]. The band-offset in all these structures can be easily
tuned by a magnetic field over several tens of meV.

3. Electronic structure of superlattices with small band offsets

3.1. Energy subbands and wave functions: first-order perturbation

We begin by considering a single band of a SL (e.g., the conduction band).
The behavior of an electron in this structure is determined by the Schrödinger
equation,

where H is the Hamiltonian, m* is the effective mass, E represents the eigenenergies
of the system, and V(z) is the periodic superlattice potential with a period L along
the z-direction (i.e., the growth axis of the SL). Such a potential can be expanded
as a complex Fourier series,

The most commonly encountered SLs are those with reαtαngulαr potential
profiles. If the origin of the z-axis is taken to be the center of one of the wells, we
find from Eq. (3) that

where L w is the width of the well, and V is its depth.
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In a typical bulk zinc blende semiconductor, a free electron or hole has a
parabolic dispersion relation in any direction, as shown in the left panel of Fig. 1.
When a weak periodic potential is turned on in the z-direction (thus forming a
small-offset SL), the Ε vs. kz dispersion relation remains essentially the same,
except that there appear small gaps (minigaps) in narrow regions close to the SL
Bragg planes, i.e., corresponding to the SL reciprocal lattice vectors. The disper-
sion curves are then broken into segments belonging to consecutive SL Brillouin
zones, as shown in the right panel in Fig. 1. The dispersion curves in Brillouin
zones other than the first can then be "folded" into the first zone by adding a
reciprocal lattice vector appropriate for the SL. Th' regions of k with highest
densities of states (i.e., those important in optical transitions) correspond to the
center and to the edges of the Brillouin zone, i.e., to k.z = ±nπ/L of the original
free electron band. We shall, therefore, focus on the energies and wave functions
of states at the zone center and zone edges.

In the NFE approximation, it is assumed that V(z) is small in compari-
son with the kinetic energy term. We can thus treat V(z) as a perturbation. To
first-order, the energy at k = ±nπ/L has two values, given by [10, 11]

where Τn = ħ 2n 2 π 2 / (2m*L2 ) . This then results in the formulation of minigaps,
as shown in Fig. 1, the magnitude of the n-th gap being proportional to the n-th
Fourier component of the SL potential [12],

Standard perturbation analysis also gives the wave functions associated with the
upper (Εn , + ) and the lower (Ε,_) energy states, given respectively by [3, 12]

The phase angle θn in Eq. (7) is determined by the relation e 28 = Vn /|Vn |, which
depends on the geometry of a given superlattice.

For SLs with a rectangular potential profile, we see from Eq. (4) that Vn is
a real quantity. Thus the value of θn must be either 0 or π/2. The two states asso-
ciated with the n-th gap will then have cos(nπz/L) and sin(nπz/L) dependences.
Which of these corresponds to the higher, and which to the lower-lying state at
the minigaps, will be determined by the specific barrier and well dimensions.

The effective masses associated with the n-th zone edge are given by the
very convenient analytic expressions derived in Appendix B

where, as before, the + and — subscripts refer to the higher and lower-lying state.
This means that the effective mass at the n-th minigap is directly proportional to
the width of that minigap.
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It is easy to see from Eq. (4) that, depending on the relationship of L w

to L, Vn can vanish for certain n. In this case, according to Eq. (6), the mini-
gap at kz = ±nπ/L will also vanish. This result is a consequence of first-order
perturbation theory. Second-order perturbation analysis will show, however, that
the minigaps do not completely vanish at the condition Vn = Ο. We have derived
in Appendices A. and B the expressions for the minigap widths, wave functions,
and effective masses associated with the Vn = 0 condition. It is noted that the
minigap widths corresponding to Vn = 0 are indeed very small (see Appendix A);
and the magnitudes of the effective masses are, accordingly, much smaller than
the masses associated with minigaps which are open in first-order calculation (i.e.,
when Vn 0; see Appendix B). The densities of states associated with points in the
Brillouin zone corresponding to n for which Vn = 0 are then extremely smahh, and
optical transitions occurring at these points are expected to be correspondingly
weak.

As stated above, the conditions for which Vn = 0 depends on the SL geom-
etry. Before proceeding further, we identify the specific cases for which Vn = 0
(i.e., which minigaps correspond to weak optical transitions):

(a) When Lw = Lb (Lw /L = 1/2), we see immediately that Vn will vanish (and
thus minigaps will close in first order) for all even values of n;

(b) When Lb = 2Lw (L/L = 1/3) or Lw = 2Lb (Lw /L = 2/3), first-order
minigaps will close for n = 3, 6, 9..., and higher multiples of 3;

(c) When Lb = 3Lw (Lw /L = 1/4) or Lw = 3Lb (Lw /L = 3/4), first-order
minigaps will close for n = 4, 8, 12, ... etc.;

(d) When Lw /L = 1/5, 2/5, 3/5, or 4/5, the lowest minigap to close will be for
n=5,... and soon.

In general, the thinner the well or the barrier, the higher the value of n
for the lowest vanishing minigap. Because of the small density of states at such
minigaps, we will not consider them in the context of optical transitions, restricting
ourselves to these gaps which are open in first-order perturbation analysis. Here
it is important to note that there is no geometry for which the lowest minigap
(n = 1) could go to zero in first-order perturbation, since for that to happen,
Eq. (4) would require that Lw = 0 or LW = L, a condition under which the SL
itself would disappear.

3.2. Illustrative example: Lw = Lb

As a specific illustration of first-order perturbation results, consider a SL
with wells and barriers of equal width, Lw = Lb, i.e., L = 2Lw . As already stated,
we choose the origin z = 0 to be at the center of one of the wells. Using L w = Lb
in Eq. (4), we get
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First-order perturbation analysis thus leads to the vanishing of minigaps when n
is even (via Eq. (4)), while the minigaps for odd n are finite, but get progressively
smaller with increasing n, yielding the picture of the band structure shown in
Fig. 2 (where the SL wave vector is denoted by q, and the minigap at kz = ±nπ/L
in the extended zone is denoted by the index n).

We can now determine the wave functions for the finite (odd n) minigaps.
We recall that for a rectangular potential the wave functions are pure sines and
cosines of argument (nπz/L). Their ordering (i.e., whether the upper state will be
cosine-like or sine-like) depends on the sign of Υ, , which determines the phase θn
in Eq. (7). If Vn >0 (i.e., for n = 3, 7, 11, ... as shown in Eq. (9)), θn = 0, and
Eq. (7) becomes

For even n, (Vn = 0), second-order perturbation must be applied to obtain
Eg , n , as discussed in Appendices A and B. For example, it is shown in Appendix A
that the minigap for n = 2 is V 2/(4Τ2 ), which is extremely small (smaller than
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the higher-lying minigaps for odd n), but nevertheless finite. The wave functions
for the upper and lower extrema associated with this gap are, respectively,

as shown by Eq. (A16). Figure 3 shows the subband structure with proper order
of the wave functions at the minigaps for the case of Lw = Lb.

3.3. Wave function mixing: second-order perturbation

Wave functions play a central role in determining the selection rules for op-
tical transitions, since the transition intensity is determined by the wave function
overlap between the initial and the • final states. When the band offset is very
small, the sin(nπz/L) and cos(nπz/L) functions obtained from first-order pertur-
bation provide a good description for wave functions of the states at the n-th
minigap. However, we will show next that, as the offset increases (although still
satisfying the "smallness" criteria discussed in Sec. 3.4), it will progressively bring
about admixtures from other nearby subband states into the wave function under
consideration.

To discuss such mixing, we start by taking sin(nπz/L) and cos(nπz/L) func-
tions as new basis functions at the n-th minigap. We then include the second-order
contributions to these wave functions by means of second-order perturbation the-
ory. Let us first consider the even parity (cosine) state. Since we have chosen the
center of the well as the origin of the z-axis, the superlattice potential is charac-
terized by inversion symmetry. Thus
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i.e, the wave functions with different parity will not mix. So for the even-parity
state

Using Eq. (3), we then have

1.

Letting n' - n/2 = m, where m = ±1, ±2,... , Eq. (15) becomes

Similarly, for the odd parity state, we obtain

Therefore, as the offset increases, it progressively brings about admixtures from
neighboring subband states of the same parity, as shown by the second term on
the right.

As an example, we refer once again to the case of a rectangular potential
with Lw = Lb. We can now obtain the wave functions to second order for such a
system, for all minigap extrema. We illustrate this explicitly for states at the zone
center (q = 0). For n = 0, we obtain

where the normalization factor Α0 is {1 + 2[V/(πΤ2)] 2 } -1 / 2 .
For n = 2, we obtain
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where Α2,+ = {1 + 2[V/(π72)] 2 + [4V/(9πΤ2)] 2 } -1 / 2 , and
Α2,- = {1 + [2V/(πΤ2)]2 } - 1/ 2 .

It should be noted that, in deriving Eqs. (18-20), only admixtures from the
neαrest neighboring subbands to the first-order wave functions are included. When
the offset is small (the term "small" will be defined in the next section), admixtures
from the more remote subbands rapidly decreases with energy separation, and
can be neglected. We illustrate this 6y Table I, which lists wave functions for
several lowest conduction band states, including the admixtures from the nearest
neighboring states. In the table, we use the following notation. The subband states
are denoted by eNq , where e stands for "electron", N represents the N-th subband,
and q is the SL wave vector. The parameter δ is defined as Vc/(πΤc2 ), where the
superscript "c" stands for conduction band, and V and Τ2 have been defined
earlier. The wave functions of the corresponding heavy-hole subband states at
q = 0 and q = 1 have the same form as those given in Table I, with δc replaced by
w = Vv/(πΤv2 ), the superscript "v" denoting heavy-hole valence band parameters.

3.4. Conditions for small band offset

In discussing SLs with small band offsets, the term "small" is relative, and
must be defined more precisely. We do this for SLs with rectangular potentials,
where the Fourier coefficients are always real quantities. By inspection of Eqs. (16)
and (17), we note that the following condition must be satisfied for the perturbation
theory to be applicable:

This condition will be different for different states, becoming more relaxed as n
increases. Thus, if we define the "small-offset" criterion for low-lying states, it will
be automatically satisfied for αll states.

It is easy to see that the smallest value of the denominator Τn+2m — Tn in
Eq. (21) (i.e., that corresponding to the lowest-lying state, n = 0) is Τ2. At the



This can be expressed in units of meV as

Semiconductor Superlattices with Small Band Offsets 	 577

same time the numerator V„ f Vn+m decreases with n (see Eq. (4)), so that its
largest value is 2V1. The most stringent form of Eq. (21l is therefore

If Eq. (22) is satisfied, Eq. (21) is automatically satisfied for all n and m.
We will therefore use Eq. (22) as our criterion for defining the offset as

"small", and we now examine this condition in greater detail. For a rectangular
potential profile

substituting Eq. (23) into Eq. (22) leads to the following condition:

Since T2 = (2πħ) 2 / (2m*L2 ) , we then have the small-offset condition expressed in
the compact form

Now we note that | sin(πLw /L)| has its highest value for L„ = Lb, resulting in the
most stringent inequality for small offsets,

where m0 is the free electron mass, L is expressed in Å, and we label the right-hand-
-side as the critical value, Vcr.

We use Eq. (27) to give a numerical estimate of a "small-offset". Using 100 Å
as a representative SL period, and m* = 0.15m0 as a typical electron effective mass
for wide-gap Il—VI semiconductors, we obtain the Vcr in Eq. (27) to be 157 meV.
Taking 25% of that value as suffIcient for the perturbation calculation to hold, a
SL with a band offset of 40 meV or less can safely be regarded as a "small-offset"
SL. This is consistent with our "working" hypothesis expressed earlier that the
offset may be regarded as small when it is below about 3% of the energy gap of
the barrier material. We will show later by exact numerical calculations that even
SLs whose offsets significantly exceed this criterion are still satisfactorily described
by the analytic expressions derived via the perturbation approach.

Severah additional insights follow from Eq. (25). First, the smaller the effec-
tive mass, or the shorter the SL period, the higher can be the actual value of the
offset V satisfying the perturbation condition. And second, we note that as  Lw

departs from L/2 valise, | sin(πLw /L)| in the denominator of Eq. (25) will decrease.
Thus the narrower the thickness of either the wells or the barriers, the higher can
be the actual vahue of V satisfying the small-offset condition. This justifies the
"intuitive" comments made earlier, at the end of Sec. 2.1.
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We illustrate these features in Table II, which shows the estimates of Vcr for
conduction and valence band offsets obtained from Eq. (25) for several specific SL
geometries. In these estimates we have assumed that the electron effective mass is
0.15m0 (typical for ZnSe and other wide gap FI-VI semiconductors), and that the
heavy-hole mass is five times larger than the electron effective mass — a situation
characteristic of many wide-gap semiconductor compounds [13]. It can be seen
from Table II that, for the case of Lw = Lb, the condition for small-offset rapidhy
relaxes as the period of the SL gets smaller. And for any fixed SL period, we find
further that, as noted above, the narrower the wells of the superlattice, the higher
can V be in this regime. Physically, this reflects the fact that the states in a SL
move up ín energy as the well width shrinks. In the limit of very narrow wells, the
ground state of the SL will be pushed up very close to the top of the well. One then
expects that this situation will behave as a "small-offset" system. Table II also
illustrates the effect of shrinking barriers pointed out in the preceding paragraph:
i.e., the thinner the barriers, the larger can be the offsets satisfying Eq. (25) even
for substantial well thicknesses. In this case the interaction between wells will be
large, and thus the subbands broad. This effect of shrinking thicknesses of either
the wells or the barriers can be appreciated from an alternate point of view. Clearly
the superlattice will vanish in the limit as we allow either the well thickness or
the barrier thickness to approach zero, acquiring in either case bulk-like charac-
teristics. Thus superlattices with ultra-narrow barriers or ultra-thin well widths
must necessarily represent the regime of intermediate dimensionality, to which the
small-offset concepts automatically apply.

3.5. Effect of effective mass differences in SL layers

In the discussions above, we have not taken into account the consequences
of the effective mass difference in the barriers and in the wells. It has been shown
that such mass differences alone can also result in subbands, minigaps, and stand-
ing waves in SLs (the so-called effective-mass SLs) [14]. It can be shown from
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the results of Ref. [14] that the maximum minigap width produced by the mass
difference is

where L is the SL period, m, and mb are the effective masses in the well and bar-
rier materials, and Δm* is the mass difference mb - m*,. Now in semiconductors
the effective mass usually scales with the energy gap, so that Δm* will be auto-
matically accompanied by a band offset, i.e., Δm*/mb = V/Eg . This relationship,
together with Eq. (28), gives us the opportunity to compare the effects of Δm*
and V. For example, for a SL with Lw = Lb, the first minigap width Eg,1 is 2V/π
(see Eqs. (6) and (9)). We then have

Using 100 Α as a representative SL period, Eg = 2 eV, and m* = 0.15m 0 , which
are typical values for the Il—VI semiconductors, we obtain the ratio of Εg ,m,. over

Eg,1 to be 0.4%. This indicates that the effect of the effective mass difference is
exceedingly small compared to that produced by the corresponding band offset.
The effect of the mass difference can therefore be ignored in small-offset SLs, as
we have done in this presentation.

4. Optical properties of small-o ffset structures

4.1. Selection rules for optical transitions
4.1.1. type-I superlattices without wave function mixing

As a basis of comparison, we first summarize the well-known selection rules
for optical transitions in type-Ι SLs with large band offsets. In those structures,
subbands at energies below the barriers are strongly localized in the wells by the
confining potentials of the surrounding barriers. These subbands are indexed by
a quantum number (say, N), starting from that closest to the bottom of the well
for conduction electrons, and from the top of the well for the holes. The subbands
corresponding to the same quantum number have the same symmetry (parity),
and this results in the so-called "Dingle rule" [15] for interband optical transitions
(ΔN = 0), which largely determine the optical properties of type-Ι superlattices.

In this section we concentrate on interband transitions in small-offset SLs.
We will restrict ourselves to transitions between the conduction band and the
heavy-hole valence band, because these transitions dominate the interband optical
spectra. Since our primary purpose is to present the special properties character-
izing the small-offset regime, this simplification has the advantage of keeping the
physics in evidence.

To facilitate discussion of these transitions, we again use the designations
eNq and hhNq for the subband states, where e and hh stand for "electron" and
"heavy hole". For example, el1 —+hh21 refers to the transition from the first con-
duction subband to the second heavy-hole subband at the zone edge. To obtain
the selection rules for optical transitions, we need to evaluate the wave function
overlap (ψi |Ψf), where ψ and ψf are the wave functions associated with the initial
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and the final states, respectively. Since the origin of the potential profile with re-
spect to z is chosen to be at the center of a well, the SL is symmetric in z, and the
wave functions will display a definite parity with respect to the chosen origin. As
we shall see, when we consider wave functions obtained in first-order calculation,
this will result in a nonvanishing overlap integral only if ΔN = 0.

As a specific example, we consider a type-I superlattice with Lw = Lb. With
the use of the following orthogonality relations:

it is easy to see from Fig. 3 that the wave function overlap (Ψi |Ψf) translates into
the ΔN = 0, Δq = 0 selection rule at both q = 0 and q = 1. This is exactly
the same selection rule which applies to large band offset superlattices, referred
to above (Dingle's rule) — except that in the familiar case of deep wells one does
not concern oneself with the value of q, since the subbands are relatively flat and
narrow.

The ordering of the cos(nπz/L) and sin(nπz/L) states at the n-th minigap
shown in Fig. 3 is specific to Lw Lb geometry. For Lw ψ Lb the sequence of
sine and cosine functions may be different. However, for type-I SLs, the ordering
will always be the same for the conduction and the valence subbands, and hence
the ΔN = 0, Δq = 0 selection rule will always apply, as long as we stay in the
first-order approximation.
4.1.2. Type-I superlattices with wave function mixing

When the band offset is very small, the ΔN = 0 selection rule applies very
well. However, we have shown in Sec. 3.3 that as the offset increases — although
still satisfying the "smallness" criteria discussed in Sec. 3.4 — it will eventually
bring about admixtures of different subband states. When we calculate the wave
function overlap with such admixtures included, we will find that — in addition
to the ΔN = 0 selection rules — certain new transitions with ΔN # 0 will
also be allowed. For instance, we see from Fig. 3 and Table I that for SLs with
Lw = Lb, transitions hhl→e3 and hh3—>ei become possible at q = 0, hh2— e3
and hh3—>e2 become allowed at q = 1, and so on. To estimate the intensities of
these ΔN ≠ 0 transitions, we must calculate the actual wave function overlap of
the corresponding initial and final states. For example, the transition intensity for
hhl—*e3 at q = 0 is proportional to |Ρ(hh3 —> e1)|2, where Ρ(hh3 → e1) is the
wave-function overlap between the hh3 and the el states at q = 0. Using Eqs. (18)
and (19), we have



Semiconductor Superlattices with Small Band Offsets 	 581

where the superscript "c" and "v" refer to the conduction and the valence bands
of the SL, respectively. In Fig. 4, we show the wave-function overlap for several
transitions induced by wave-function mixing for a SL with Lw = Lb, and V c = Vb.
It is important to note that the transition probability of the "forbidden" transitions
increases with increasing band offset. The resuhts in Fig. 4 are obtained for V" = Vc

and Lw = Lb, but our calculations for other combinations of these parameters yield
qualitatively very similar behavior [3].
4.1.3. Type-II superlattices

We now consider type-II superlattices. For traditional type-II superlattices
with large-band-offsets, there are no simple selection rules because the electrons
and the holes are separated in space. However, we will show that for type-II su-
perlattices with small band offsets, selection rules can be found similar to those
in type-I structures. In fact, until the band offset becomes very large, there is no
qualitative distinction between the type-I and the type-II configurations. This is
another characteristic that is unique to the regime of intermediate dimensionality.

As before, we represent the band offsets for such a system by Vc and V", re-
spectively. The Fourier coefficients corresponding to the conduction band potential
profile may be written, in accord with Eq. (4), as

But in a type-II SL (also called the staggered configuration) the layers which act
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as wells for conduction electrons constitute barriers for the holes, and vice versa.
If we pick the origin in the center of one of the conduction band wells, the origin
automatically occurs at the center of a valence band barrier. We can handle this
formally by describing the offset in the valence band as negative (—Vv). In this
convention, the Fourier coefficients for the valence band potential profile become

where Lw represents layers which correspond to conduction band wells (i.e., Lw is
physically the same layer in Eq. (32) and Eq. (33)).

Hence Vcn and Vn at the n-th minigap of a type-II superlattice have opposite
signs. Recahhing that the phase factor θ, in Eq. (7) is determined by the sign of V,,,
we see immediately that cos(nπz/L) and sin(nπz/L) states wihl have exactly the
opposite order for the conduction subbands as they do for the vahence subbands.
The sehection rules for such a SL (to first order, i.e., without wave function mixing)
are therefore

at q = 0 and q = 1. The ground state (N = 1 at q = 0), however, is always an
even function. Thus ΔN = 0 continues to apply for the ground state transition
(hh1—e1 at q = 0).

As in type-Ι SLs, wave functions in type-II SLs can mix states which have
the same parity and wave vector q, and are close in energy. This will again result in
many new transitions, not ahlowed by the ΔN = 1 rule of Eq. (34) or the ΔN = 0
rule for n = 0.

4

.2. Role of effective mass in optical transitions

Consider an interband transition from an initial state |i) to a final state f).
The transition intensity is then proportional to

and fBZ indicates integration over the Brillouin zone. It can be shown [17] that
Jcv(Ε) is proportional to

where μi represents the reduced mass along the i-th direction. In our case, electrons
moving in the x- and y-directions can be considered "free" and isotropic, so that

What interests us is μz (which is determined by the SL geometry) and its effect
on J. We write μz in the form
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where, for interband transition, the masses m e and mh are the minigap masses. For
example, the reduced z-direction mass associated with the transition hh31 —+e21 is
determined by curvatures of the miniband extrema for the final and initial states
at the zone edges,

We now discuss the relationship between the effective mass and the optical
transitions. First, we recall that | Vn usually decreases with increasing n, while
Τn increases rapidly. Thus, according to Eq. (8), both m e and mh wihl decrease
rapidly as we proceed to higher subbands — and so will the reduced  mass μ z .
Since the intensity of a particular optical transition is proportional to √ |μz | , tran-
sition intensities will also weaken sharply as n increases, and we will thus limit
our study to low-index subbands. Second, the effective mass is much smaller at
those minigaps which are closed in first-order (for example, the n = 2 minigap
when L,,, = Lb). The reduced mass is then also extremely small at these values
of n (mn* m*(V/Τn ) 2 ; see Eq. (A15)). It follows automatically that transitions
involving such states will be very weak, and will also be ignored in this discus-
sion. Third, we note that m e is not necessarily much smaller than mh, since for
ΔN ^ 0 transitions they can be associated with different minigaps. Thus in some
situations me can be close in size to mh (or even larger). An interesting case
here (perhaps the most interesting) involves transitions between electron and hole
states having masses of similar magnitude but of opposite sign. It can be seen
from Eq. (39) that in this case μz exhibits a singularity. As a result, one expects
a dramatic enhancement of the transition intensity. The physical reason behind
the enhancement is that, in such a case, the valence and conduction subbands are
approximately parallel as á function of kz, and hence the joint density of states is
greatly increased.

Small-offset SLs also constitute a powerful laboratory for investigating op-
tical transitions in saddle-pοint situations. As was already noted in Eq. (38), the
effective masses in the x- and y-directions correspond to free motion, i.e., they
are positive quantities. Hence, if μz > 0, we have what is termed an Μ0 critical
point — a true minimum in all directions. If, on the other hand, μz < 0, we have,
instead, a saddle-point — termed Μ 1 saddle-point. For example the hhl 1 —+el1
transition involves such a saddle-point: it is readily seen from Fig. 3 that both m e
and mh associated with this transition are negative, so that μz < 0. The íntensity
of the excitonic absorption associated with such a saddle-point is expected to be
weak because the saddle-point exciton — since it lies at an energy slightly below
that separating the hhΙ 1 and el extrema — automatically occurs within the (wide)
miniband. It is thus a resonant state, instead of a bound state, and is therefore
characterized by a much weaker transition probability [18, 19].

We emphasize that it is the large width of the minibands — a special charac-
teristic of small-offset SLs — that results in such novel and important role which
effective masses play in optical transitions, for two reasons. First, because the
minibands are wide, the subband curvature at the zone center and zone edges
(which defines the minigap masses) becomes a quantity of physical significance in
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these structures. And second, when offsets are small, miniband widths can read-
ily exceed exciton binding energies, resulting in resonant state phenomena (and
thus in suppression of optical transitions) such as that described in the preceding
paragraph.

4.3. Comparison with experimental results

Using magneto-optical absorption in ΖnSe/Ζn �-xMnSe small-offset super-
lattices involving a diluted magnetic semiconductor (DMS) Ζn 1- x Mnx Se, Dai et
al. [2] observed a series of transitions between different conduction and valence
subbands, at both the center and at the edge of the SL Brillouin zone. The re-
sults in Ref. [2] illustrate many of the features characteristic of small-offset SLs
discussed above, and we will compare these experimental observations with the
predictions of the NFE analysis.

• We will concentrate on the data observed on a SL referred to as "Sample 2"
in Ref. [2], which had the following parameters: x 0.04, Lw = Lb = 73 Å, 10
periods (for additional details, including growth conditions, see Ref. [2]). For Mn
concentration x 0.04 the resultant band alignments, with strain present, pro-
vide band offsets which at zero magnetic field are less than 4 meV (i.e., less than
0.15% of the total band gap) in both the conduction and the valence bands. Thus
offsets at the DMS/non-DMS interfaces of the SL are practically negligible in the
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absence of a magnetic field. With the application of a magnetic field, however,
large Zeeman splittings of the band edges occur in the DMS layers as a result of
exchange interaction between magnetic moments of the Mn ions and band elec-
trons (as discussed in Sec. 2.2). This in turn generates band offsets which are
continuously tunable over a range of ±40 meV in the valence band and ±10 meV
in the conduction band about their respective zero- field values, as the magnetic
field is varied from 0 to 5 T for the two spin orientations (see, e.g., Ref. [6]).

Typical absorption spectra for the SL at B = 0, 1, and 5 tesla for the σL
polarization (spin-down transitions) and the σR polarization (spin-up transitions)
are shown in Figs. 5a and b, respectively. For consistency with Ref. [2], we use the
following labeling scheme for the transitions. The label mnh q indicates the tran-
sition from n-th heavy-hole subband (h stands for "heavy") to m-th conduction
subband at the SL Brillouin zone center (q = 0) or at the zone edge (q = 1). Thus
the shorthand notation for the transition hh3 -+e2 occurring at the zone edge
would be 23h 1 . In addition to the expected ΔN = 0 transitions, one ΔN = 1 and
one ΔN = 2 transitions are also present in Fig. 5. These transitions are allowed
on the basis of the anticipated relaxation of the ΔN = 0 selection rule as the
offsets increase, causing the wave functions to depart from their purely sinusoidal
standing wave form. We now discuss these additional transitions.

The band structure and the first-order wave functions at minigaps for a
small-offset type-I superlattices with LW = Lb were shown in Fig. 3. We have
demonstrated that the higher-order wave functions contain admixtures from neigh-
boring subbands of the same parity (see Table I). Due to such wave function
mixing, we should expect the following ΔN ψ 0 transitions:

(i) at q = 0 : 13h0 (hh3 0 — e10 ), 31h0 (hhl 0 —> e3 0 );
(ii) at q = 1: 23h1 (hh3 1 → e2 1 ), 14h1 (hh4 1 --> el l ), 41h 1 (hh1 1 → e4 1 ),

32h1 (hh2 1 --^ e31).
Here it should be noted that we have limited ourselves to those transitions involv-
ing the first three subbands at q = 0, and the first four at q = 1, since the joint
density of states for transitions involving higher subband states rapidly decreases
with n.

As discussed in preceding sections, the optical transition intensity is deter-
mined by the wave function overlap of the initial and the final states, together
with the joint density of states associated with the transition. Table III lists the
wave function overlap within one SL period for a series of transitions calculated
using the NFE model for Sample 2 for a field of 1 tesla, for spin up subbands. The
valence and conduction band offsets corresponding to such a field are 15 meV and
3 meV, respectively [20]. (Note that the NFE model does not explicitly include the
magnetic field or the exchange interaction, but formulates the problem in terms
of the band offset, regardless of how that offset is produced. In the specific case of
DMS/non-DMS SLs, such as Sample 2 of Ref. [2], the offset arises via the Zeeman
splitting of the band edges in an applied magnetic field, as discussed in Sec. 2.2,
and we then use this band-offset in our NFE model calculation).

Table III also gives the calculated reduced masses μz corresponding to these
transitions, which can be used as a measure of the joint density of states according
to Eq. (37). The intensities of these transitions were estimated from the



586 	 G. Yang et al.

product of the square of the wave-function overlap and the square-root of μz (see
Eqs. (35) and (37)). These estimated intensities (normalized to the hhl 0 →el 0

transition) are also shown in Table III, except for those cases where μz < 0. As
discussed in Sec. 4.2, a negative μz is associated with an Μ1 saddle-point, so that
the intensity of a corresponding transition is expected to be very weak [18, 19].

We begin by considering transitions at the SL Brillouin zone center. From Ta-
ble III, one can see that the 11h0 (hhl0 —+el0) transition is the strongest, primarihy
due to the highest joint density of states. On the other hand, 22h0 (hh20 —e20)
and 33h0 (hh30 —e30) transitions should be weak (in spite of the fact that they
are both ΔN = 0 transitions), due to the much smaller joint density of states
associated with the extremely small minigap for n = 2 at zone center (see Figs. 2
and 3). For this reason we expect all transitions involving states e2 0 and e30 to be
weak.

Experimentally, it is indeed the case that 11h0 is the strongest transition,
while 22h0 and 33h0 are barely observable. In fact, the 22h0 and 33h0 transition
lines cannot be reliably identified from Figs. 5a and b. Dai et al. identified these
transitions only after moving them around with magnetic field (see Fig. 13 of
Ref. [2]), and with the additional aid of theoretical calculations [2].

On the other hand, Dai et al. have observed the transition 13h0 (hh30 —e10)
to be a strong transition. This is again consistent with theoretical prediction. As
can be seen from Table III, our NFE model predicts the 13h 0 transition to be the
next to the strongest transition at q = Ο. This ΔN ł 0 transition is induced by
wave-function mixing, which is small when the band offsets are small. Thus in the
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ZnSe/Zn0.96 Mn 0.04 Se SL described above, this transition was not observed at very
low magnetic fields. The 13h0 transition serves very nicely to illustrate the role
of joint density of states in determining transition intensity: the "forbidden" 13h0
transition is much stronger than the "allowed" 22h 0 or 33h0 transitions because
the density of states associated with the el0 subband is much higher than that for
either e2 0 or e3 0 . -

Another expected ΔN Ο transition, 31h0 (hh1 0 --+e30), is experimentally
not observed despite its non-negligible wave function overlap (see Table III), again
because of the small density of states of the e30 state. The peak intensity of this
transition is, therefore, expected to be at most comparable to the 22h0 and the
33h0 transitions, but it lies closer to the region of high opacity, and is thus totally
obscured.

Next we discuss the transitions at the SL Brillouin zone edge (q = 1). Both
11h 1 (hhl1 —>e1 1 ) and 22h 1 (hh2 1 —+e2 1 ) transitions were observed. The intensity
of the 11h1 transition was found to be much weaker than that of 22h 1 . This is
because the 11h 1 is a saddle-point excitonic transition (negative μz , see Table III),
and its intensity should be weak, as discussed in Sec. 4.2. Note that in Table III,
the 11h 1 transition has the highest wave function overlap of all. Despite this,
the absorption peak is barely noticeable, illustrating the role of the sign of μz in
determining transition intensities.

The most interesting transition observed at q = 1 is the 23h1 line, involving
the hh3 1 and e2 1 states. This is another wave-function-mixing-induced transition.
The estimated intensity shown in Table III indicates that this is a strong transition,
which is indeed the case experimentally. The calculated wave function overhap
between hh31 and e2 1 states as a function of band offset has been shown in Fig. 4.
Judging by the behavior of the overlap, we would not expect to see this ΔN = 1
transition at very low magnetic fields. This is, however, not the case: the transition
is clearly seen even for B = Ο. We suggest that the reason for observing the 23h 1

transition at these low fields (i.e., at low offsets) can be explained by examining
the dispersion of the e2 and the hh3 subbands in Fig. 3. As can be seen, these
subbands are essentially parallel to each other at q = 1, which greatly enhances the
joint density of states, thus leading to a stronger absorption than for transitions
involving opposite curvatures of the Ε vs. kz dispersion. Note that Table III shows
that the reduced mass associated with this transition is exceptionally large, so that
the intensity of this transition should indeed be quite strong.

From the wave-function overlap shown in Table III, one may also expect to
see the 14h1 (hh41 —ell) transition. However, the reduced mass associated with
the 14h 1 transition is again negative, indicating a weak transition based on the
arguments given above. Experimentally, this transition was not observed. Finally,
all the transitions involving e31 and e4 1 states at q = 1 lie very high in energy
(calculated energies for these transitions are above 2.88 eV). These transitions are
buried in the absorption tail of the buffer layer, and thus were not observed in
experiment.
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5. Comparison of NFE analytical results with numerical calculations

5.1. Eight-band k . p model and numerical calculations

The results presented in preceding sections were obtained in the NFE approx-
imation, which assumes that the band offset of superlattices under consideration
is small, and neglects interactions between bands. The simplicity of this approach
has made it possible to formulate the description of small-offset SLs in anahytical
terms, providing valuable insights into the behavior of semiconductor structures
in the regime of intermediate dimensionality. The approach appears to us a priori
justified for dealing with most wide-gap II-VI and III—V SLs, since the interband
interactions are expected to be small in these materials, allowing one to analyze
the conduction and the valence bands separately.

Nevertheless, it is important to establish the validity of this approach by
demonstrating that the approximations made in the NFE model are indeed jus-
tified. We can do this by comparing the results (specifically, wave functions and
subband energies) obtained by the analytical NFE method with those obtained by
numerical methods from an eight-band k . p model, which accounts for inter-band
interactions, and which is valid for offsets of arbitrary value [21]. In this model, the
band structure of a SL can be conveniently handled in terms of the so-called en-
velope function approximation [22]. The Schrödinger equation obtained from this
approximation is a set of eight coupled second-order differential equations in the
variable z, with proper boundary conditions at the interfaces. The equations can be
numerically solved using the transfer-matrix method (TMM) algorithm developed
by Ram-Mohan et al. [23]. This model satisfies the criteria stated above, and has
been recognized in the literature for successfully dealing with semiconductor band
structures in general. Comparison of our analytical results with the predictions of
such a general model will not only provide a test for the applicabihity of our results
in the small offset limits, but will also serve to establish the range of applicability
of these results, i.e., how large must the offset become for the analytical results
to fail.

In the eight-band k . p model, the interactions between the Γ 6 (conduction
band), Γ8 (valence band), and Γ7 (spin-orbit-split band) are treated exactly, and
the interactions between these bands and the more remote higher bands are in-
cluded up to order k 2 . For describing the well layers of the SL, we have chosen
the parameters of ZnSe [2], since this semiconductor is representative of wide-gap
II-VI materials which are of direct interest to our research group. To describe the
barriers, we nave chosen the same parameters as those used for the wells except
for the band gap, which was adjusted to introduce the desired amount of band
offset in the conduction and valence bands. The zero-energy point is chosen to lie
at the top of the valence band of the well material, and the band gap of the well
material is taken as 2.803 eV (the energy gap of ZnSe). In the NFE model we use
the effective masses m*e = 0.14, and m*hh = 0.73, which correspond exactly to the
values of m*e and m*hh obtained from the eight-band k . p model for ZnSe. Our pur-
pose, however, is not to attempt a rigorously accurate description of ZnSe or any
other specific material, but only to compare the predictions of the NFE and of the
numerical multi-band calculation for identical structures. For the same reason, we
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do not include either the strain or the magnetic parameters given by Ref. [2] in our
8-band model calculation. We only focus on the energy levels and wave functions
for a given band offset value, which allows us to make direct comparisons of the
numerical calculations with the results of the NFE model obtained for the same
value of the offset.

As a test case for comparing the NFE and the 8-band numerical calculations,
we have chosen a type-I SL comprised of 50 Α wells and 50 Α barriers. At these
dimensions the structure clearly displays all features characteristic of SLs: localiza-
tion of states deep in the well, effects of confinement of subband energies, and sub-
band interactions across barriers. Such dimensions are also typical for structures
used in experiments. The choice of equal well and barrier thicknesses (LW = Lb)
corresponds to the situation examined explicitly in previous sections, so that we
can make reference to those results in discussing the numerical calculations.

5.2. Comparison of NFE and TMM results
5.2.1. Wave functions

Correct calculation of wave functions at subband extrema is crucial, be-
cause this will determine the wave function overlap associated with specific optical
transitions. We therefore give special attention to comparing the wave functions
predicted by the NFE model and by the 8-band model using the transfer-matrix
method.
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We begin by examining the progression of ψ(el0)| 2 for a series of offsets, as
shown in Fig. 6. In this figure — and in those that follow - the continuous curve
represents the NFE calculation, and the 8-band numerical calculation results are
given by points. The electron probability | Ψ|2 is plotted as a function of z, with
z = 0 corresponding to the center of one of the wells. The wave function ψ is
normalized so that | Ψ|2 integrates to unity over one SL period.

We see in Fig. 6 that the agreement of |Ψ(e10)| 2  calculated by both methods
is excellent for offset values up to at least 40 meV. At offset values of 80 meV and
150 meV, the NFE wave functions begins to deviate from the 8-band calculation.
However, the agreement is in general still quite good even at these values of band
offset. We use this occasion to recall that the oscillatory behavior of ψ(e1 0) as
a function of z is itsehf a result of admixture from nearby states, arising from
second-order perturbation. The amount of admixture is proportional to V (see
Table I), and Fig. 6 thus serves to illustrate the gradual transformation of the SL
from 3D to a 2D medium: when V = 0, the wave functions revert to their bulk
characteristics, with no localization.

We now consider |ψ(e11)|2 , shown as a function of z in Fig. 7. The agreement
between NFE and the 8-band numerical calculation is again excellent, better in
fact than for the e1 0 state. This is to be expected, since in examining ψ(e1 0 ) our
attention was focused on the oscillatory admixture (primarily from the e30 state;
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see Table I) arising from second-order perturbation, while ψ(e11) is dominated by
the first-order contribution (the cos(πz/L) dependence). Here it is interesting to
note that, as V increases, |ψ(e10)|2 and |ψ(e11 )| 2 , become more and more like one
another. This provides insight into an important physical process: as V becomes
larger, the n = 1 subband becomes increasingly narrow and flat, gradually losing
its dependence on q. The states e10 and e1 1 , which represent the extrema of this
subband at q = 0 and q = 1, must eventually become indistinguishable — and we
indeed see this happening as V becomes large.

We now present the results for the state e21 (see Fig. 8). Note, first, that
|ψ(e2 1 )| 2 varies as sin 2 (πz/L), i.e., that the parity sequence of the standing waves
predicted by the 8-band model is the same as that of the NFE model, displayed in
Fig. 3. This feature — the agreement of parity between NFE and 8-band models
— survives for all states examined. Returning to Fig. 8, we note the similarity of
the two calculations even when the wave function is deformed by admixtures, as
shown for V = 80 meV in the lower panel.

The comparison of wave functions at higher subbands calculated by NFE
and 8-band model, such as |ψ(e20 ) |2 , ψ(e30) | 2 and ψ(e31)| 2 , is similarly good.
Since the agreement of wave functions is actually expected to improve as we test
increasingly higher-lying subbands, we will stop our wave function comparisons for
the conduction band, and will proceed to examine wave functions in the valence
band.



592 	 G. Yang et al.

In Fig. 9 we compare the probability distributions |Ψ(hh11 )| 2 calculated by
NFE and by the 8-band model. The agreement between the two results is once more
rather striking. Although this may appear qualitatively repetitious after discussing
the comparison for the state e11 (and it certainly is so in the context of the NFE
approximation), making the comparison with an exact calculation is in this case
necessary because of the special complexities characterizing the heavy-hole band.
The latter band lies close to the light-hole and the 17 bands, and one must therefore
test for the effect of interactions with those bands. The agreement between the NFE
calculation (which does not include these interactions) and the 8-band numerical
calculations (which accounts for them exactly) demonstrates that, at least within
the offset limits tested, heavy holes can be satisfactorily described in terms of the
free-particle model.
5.2.2. Subband energies and minigaps

We calculated the energies at subband extrema (i.e., for q = 0 and q = 1) by
the NFE and the 8-band k . p models for a 50 Á/50Å superlattice, for offsets of
10 meV in both the conduction and the valence bands. The valence band well is
thus at 0, the conduction well at 2.803 eV, the conduction band barrier at 2.813 eV,
and valence band barrier at —0.010 eV. The. results are presented in Table IV. The
energies were actually calculated to an accuracy of 0.001 meV and were rounded off
to 0.1 meV in the table. The values of the minigaps were rounded off to 0.01 meV.
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Examining Table IV, we note that the agreement between the NFE and the
results obtained from the 8-band model is in general quite good for the lower
states (within 2 meV), but the two calculations begin to depart one from the
other for higher subbands. This is clearly noticeable for subbands e31 and higher
in the conduction band. The fact that the NFE result is systematically higher
than the value calculated from the 8-band model offers an important insight into a
mechanism not previously considered. We ascribe this deviation to nonparabolicity
of the Ε vs. k relationship, which is very precisely accounted for in the eight-band
model, but is not present in the NFE model.

A feature that clearly emerges from Table IV in both the NFE and the TMM
results is that, when the offsets are small, most of the states lie at energies above
the barriers. This is clearly evident in the case of conduction band, where only
the e10 state is in the well, with most of the lowest (N = 1) subband and all
higher subbands above the barrier. The same will be true of the valence band for
smaller offsets than that arbitrarily chosen for calculations in Table IV. It is for
this reason that states in small-offset SLs resemble in many ways above-barrier
states in conventional SLs [24, 25]. In both these cases the states are localized as
standing waves formed by Bragg reflection, rather than by direct confinement in
the SL wells [26].

We now consider the minigaps calculated by the two methods, as listed
in Table V. The agreement is excellent, even for the higher subbands, where the
above-mentioned nonparabolicity effects begin to be important. Note also that the
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lowest minigaps in both bands, (i.e., those between e21 and e11 and between hh2 1

and hh11) are very close to one another. This is as it should be since, according
to Eqs. (4) and (6), the minigap only depends on the band offset V (which in this
case is the same in both bands). On the other hand, minigaps between e3 0 and
e2 0 , and between hh30 and hh20 are closed in first-order calculation for Lw = Lb
(Vn = 0 for n = 2). The second-order perturbation result for the minigap, given
by Eq. (Α15), depends on both V and m*. It can be seen from Eq. (Α15) that the
ratio of Εvg 2/Εcg 2 would equal m*hh/m*e, which is 5.2 for the parameters used. The
minigap ratios obtained by NFE and the 8-band model are, respectively, 5.26 and
5.50. The agreement of the NFE result with m*hh/m*e is of course not surprising,
but the value obtained from the 8-band model at this sensitive point is significant
in that it confirms the valIdity of the second-order treatment (which is expected to
be more sensitive to approximations), and of the analytical results arising from it.

As energies increase, so do the subtleties of calculation which enter into the
values of the minigaps. The fact that the two methods predict results which are
very close for Εcg 3 and Εcg ,4 serves as further confirmation of the accuracy of the
NFE model and, conversely, allows us to use NFE to identify mechanisms that are
behind the exact numerical results.

6. Concluding remarks

In this paper we have explored physical phenomena which occur when a
semiconductor superlattice just begins to form, i.e., when the quantum wells which
determine the superlattice are very shallow. A distinct feature of this regime of
"intermediate dimensionality" is that, when band offsets are small, the SL wave
functions are standing waves, localized by Bragg reflections rather than by con-
finement in the wells.

We have shown that this region is characterized by a large number of novel
optical effects. For example, because of their extremely broad subbands, small-offset
SLs allow us to distinguish between transitions occurring at the center of the Bril-
louin zone (q = 0) and at its edges (q = 1). Another very striking feature of the
SLs in this regime is that, due to the wave function mixing of different subband
states, the traditional ΔN = 0 selection rule is relaxed, and many new ΔN ψ 0



Semiconductor Superlattices with Small Band Offsets 	 595

transitions will occur. We also discussed the opportunity which these small offset
systems provide of investigating the role of the effective mass (its size, sign, and
topology, such as the saddle-point) in determining the strengths of various optical
transitions.

The theoretical model we used is the nearly free electron model, and the
results are analytical and very simple. The validity of these results has been verified
by comparing them with the numerical calculations from a 8-band k. p model.
These comparisons have shown that our analytical results apply well even at fairly
large band offsets. At the same time, the analytical results — by their transparent
simplicity — provide valuabhe insights and understanding for SL behavior obtained
via rigorous but comphicated numerical cahculations.

Appendix A
Formation of minigaps for 14,,, = Ο

We have shown in Sec. 3.1 (see Eq. (6)) that first-order perturbation analysis
gives the minigap width of small offset SLs as

where 172 is defined by Eq. (3). It is easy to see from Eq. (4) that, depending on
the relationship of Lw to L, V,, can vanish for certain n. The first-order perturba-
tion minigap will then also vanish, and second-order perturbation theory must be
apphied to obtain expressions for minigaps, wave functions, and effective masses at
kz = ±nπ/L. Before we examine the second-order perturbation approach for such
cases, we will discuss the conditions necessary for 17n. to vanish for the case of SLs
with a rectangular potential profile. The Fourier coefficients Vn for such SLs are

Setting 17,, = Ο then implies that nLw /L = m, where m and n are integers. Hence
there will exist values of n for which 17» will vanish whenever Lw /L is a ratio of two
íntegers. For examphe, 1n, will vanish for all even n when L = L/2 (L = Lb); it
will vanish for n = 3, 6, 9, ... when L = L/3 or L = 2L/3; etc.; and in general,
the thinner the well or the barrier, the higher will be the value of n for which 1n,
first vanishes.

For those conditions when 14,, vanishes, we need to use second-order per-
turbation analysis to obtain the wave functions, minigap widths, and effective
masses. The wave functions will be determined by linear combinations of the basis
functions

in the form

where A and B are constants. Following degenerate perturbation theory, we find
the system of equations which have to be solved
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The resulting determinant which must be solved is then

Here Τ3 = (ħsπ) 2 /(2m*L2 ), where s stands for n or m. It is easy to show that

Ηkk = Hk'k', and Εk(0) =	 = Τ. Thus, the solution of Eq. (A6) is

where Εn , + and Εn - refer to the two energy extrema associated with the n-th
minigap. The wave functions for the "upper" and "lower" energy states at such a
minigap are

where the phase factor θn is determined by e28 = Hkk'/| Hkk'|.
The width of the n-th minigap is thus

For the case of a rectangular potential Hk,k is real, so the wave functions are
cos(nπz/L) and sin(nπz/L). Which of these is associated with Εn ' + and which
with fin ,- is determined by the phase factor θn , and that depends on the SL
geometry (i.e., on Lw /L).

As an example, we first consider a superlattice with wells and barriers of
equal width, LK, = Lb, i.e., L = 2Lw . Equation (9) shows that Vn (and thus the
first-order minigaps) vanish for all even values of n. We will see below, however,
that minigaps for this geometry remain finite for even values of n when calculations
are carried out to second order.

As an illustration, we derive the wave functions and the minigap width for
n = 2. Essentially, we need only to calculate Hkk , defined by Eq. (A7c). By using
Eq. (3), it can be shown that
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where Vm = (n|V|n'), and m = (n' — n)/2 (m is an integer). Inserting Eq. (9) into
(A11) yields

It can be proven that

Using this result in Eq. (Al2), we finally obtain

The minigap given in Eq. (A10) can thus be expressed as

which is extremely small (smaller than Eg,n for n> 2 when Vn does not vanish),
but nevertheless finite.

Finally, the expressions for the wave functions of the two states (Ε2,+ =
T2 ± V 2 /(8Τ2 )) associated with this gap are as follows (from Eq. (A9)):

Following the same procedure, one can derive the wave functions and minigap
widths for n = 4, 6, 8.... Figure 3 shows the subband structure with proper order
of the wave functions at the minigaps for the case of L w = Lb.

Appendix B
second order effective masses at subband extremes

Using the reduced Brillouin zone, we note that the Ε vs. k dependence in
the immediate proximity of each minigap can ba approximated by a parabolic
relationship

where m, is the effective mass associated with the n-th minigap, defined as

and evaluated at each subband extremum. Thus, mm 1 is related to the curvature
of the Ε(k) vs. k curve at the n-th minigap. Where the curvature d 2 Ε/dk 2 is
large, the mass is small, while a small curvature (relatively flat extremum) implies
a large mass.
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We have seen earlier that there exist instances when the n-th minigap, Εg , n ,
vanishes to flrst order for certain values of n (e.g., for all even n in the case L w = Lb

examined above). We have shown in Appendix A that in actuahity the minigaps at
these values of n are finite, but exceedingly small. We will now analyze the effective
masses characterizing minigaps which are closed in first-order perturbation.

In order to derive the expression for the effective mass (i.e., to determine
the curvature of the subband at a given zone boundary), we must examine points
which are slightly displaced from that zone boundary (i.e., from k = ±nπ/L). We
represent these points by

where Δ is assumed to be a small quantity (i.e., Δ « 1). Again, the corresponding
wave function will be a linear combination of the two states corresponding to k
and k':

We now again have to solve the system of equations (A5) and (A6), but using
wave vectors in Eq. (B3). The solution is

The notation ||mΔ) indicates those states which differ from k = (nπ/L)(1 + Δ) by
±2π/L, ±4π/L, ±6π/L, ±....

We find similar expressions for Hk'k'

The actual derivation of the above matrix elements is quite tedious, since the
states involved are shifted away from the Brillouin zone boundaries (k = ±nπ/L)
by the increment Δ. The final results for the quantities Hkk, Hkk', and Hk'k'
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contain terms involving all orders of Δ. Since Δ « 1, we keep terms only up to
order Δ 2 . By using (Β2) and the relation

where we have used Eq. (A10). As in the first-order calculation, the effective mass
is again proportional to the minigap width. But since that width is now very small,
the magnitude of the effective mass is accordingly much smaller than the masses
associated with those minigaps which are open in first-order.
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