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The Fermi-liquid system with S-wave and D-wave pairing interaction
harmonics is considered. The general equations for energy gap and thermo-
dynamic potential difference for arbitrary temperatures are given. The de-
tailed calculations are performed for zero-temperature limit.  The obtained
results are illustrated and discussed. The value and structure of energy gap
are presented. It is showed that the anisotropic gap can be realized only for

go < g2.
PACS numbers: 74.20.~z

1. Introduction

Recently, in available experimental information the consensus appears that
the Fermi-liquid theory of superconductivity including the modified pairing inter-
action can be applicable to a broad range of systems of the new generation super-
conductors, i.e. cuprate, heavy fermions and organic superconductors which reveal
existence of the unconventional Cooper pairs (c.f. [1-5]). Though there exist lots
of theoretical works, where Fermi systems with modified pairing were considered,
most of them involve solely one fixed harmonic in the pairing interaction channel
[6-8]. The purpose of this paper is to find the stable states for Fermi-liquid system
in which the pairing interaction is represented by the S and D Legendre harmonics
precisely. In the present considerations we apply the self-consistent Green function .
formalism in the frame of the weak-coupling approximation, where the specified
pairing harmonics can be easily included [9].
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2. Formalism and results

The BCS gap equation in the case of quite arbitrary pairing interaction can
be written as follows:

Ap=—(1/2) Y Vi Ap € tanh (B /2) M
. k’
where
g=ci+atay  B=1/0T) (2)
and
~ o~
Vi = Ve Pr (k : ’“) 0 (hw = leg) 0 (hw — leg 1) ®)
L

where Pr, are Legendre polynomials and w is the characteristic Debye frequency.
Assuming that all V; for L = 4,6,8,... vanish identically, we investigate the
system with a combined S-wave and D-wave pairing. Replacing the summation
over momentum space by integration, Eq. (1) reduces to the following form:

Az ==N(0) ( Vo + V2P, (7375)] qus} , (4)
where
hiw
o= i ds»,;:&’g,l tanh (’887:' / 2) (5)

and
(...):/d(}/];:/élw-..., (6)

N(0) denotes the density of states on the Fermi level per spin and per unit volume.
Though the general form of A’[,' should be written as follows:

A/k\,z ZALMYLM(9,¢), (7)
LM

where Yz s are spherical functions and L = Q0 or 2, —L < M < L, we take into
account its reduced form '

A/i:l =A (SYOO + DYQ()) , (8)
where A = <|A£,|> Yoo = 1, ¥a0 = (v/5/2) (3cos? 6 — 1) and

(1SYo0 + DY30|?) = |S* + |D|* = 1, ' (9)
which should be the appropriate one as the system favors the most uniform solu-
tions. Although using Eq. (4) we can derive all self-consistent equilibrium states,
some of them can be unstable. In order to eliminate them we have to define the
thermodynamic potential difference between the paired and normal states. Em-
ploying the standard relations [10] and performing an algebra, the thermodynamic
potential difference for the case under the discussion can be developed into the
equivalent forms

S
— 12 ~ !
AQ = —N(0)A /0 (1agpos/ons) as
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D
_53/2 3 /12 3 N
N ©)a [ (Prosjong)| (10)
or
s
AQ = —N(0)2® / ' (90/045)| as'
; %/ |p=
_51/2N(0)A / (145pPo02/0a) aD, (11)
where we also include the condition
(SD* — S*D) (P2®) =0, (12)

which allows us to eliminate the imaginary parts in r.h.s. of Eqs. (10) and (11).
We emphasize, the presented Eqgs. (4) and (10) or (11) create possibilities to
solve the problem for arbitrary temperatures. However, because of a high degree
of complication, in the present paper we restrict our consideration to only the zero
temperature case, whereas the results obtained in the opposite limit 7' — T¢ can
be found in Ref. [11].
Below we also introduce the symbol

Vi
1
2 = g7 N(O) (13)
and employ the following formula:
~
P ( ) [1/(2L +1)] ZYLM ( ) Yiu (%) (14)

Inserting z = cosf we can replace the averaging over spherical angles (6) by the
integral

1
(...)_>(1/2)/ d-.... (15)
-1
In the zero-temperature limit Eq. (5) reduces to the following form:
& =1ln 2 (16)
|44

Let us note that for gg > 0 the ’Ia\:—isotropic gap (AZ; = A) is always the solution of
Eq. (4), which reduces to the form

Equation (4) can be separated to the forms

S = go(1/2) [, dz (S + DY»0) In[2hw/(A|S + DY30))]
D = go(1/2) [, dz (SY20 + DY) In[2hw/(A|S + DYaol)]

Inserting the complex parameters S and D in the forms S = |S|exp (ips) and
= |D]exp (ipp), we get respectively

(18)
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1
ln?—}i‘)——-izl/ dx(1+,§

—i0)Ys
A T4 “Xp(=i¢) ”)

x In (|S|? + |SD|Yao cos(¢) + [DI2Y3) (19)

1
lng—l}f——izl/ dm(Yzzo+‘%

A g2 4 1 exP(lﬂo)Y%)

x In (|S|? + |SD|Yz0 cos(p) + | DI*Ysp) (19b)

where ¢ = s — ¢p.
Since the r.h.s. of Egs. (19) must be real, the following conditions have to
be fulfilled:

exp(ip) = 1, (20)

or

1
/ dzYaoln (|S|? + [SD|Ya0 cos(i) + | DY)
-1

1
= / dzYaoIn (|S/DI? + |S/D[Yz0 cos() + Y2) = 0. (21)
-1

In the former case, after integrating we get

2h
—Agexp (-1/g90) = |S + V5D
4 5D 4 25D S
Xe"p{"§+‘3—§+ <§_T§>F(B>}’ (222).
2hw

—exp(=1/g2) = |S + V5D|

cexpd 16, 4 5 4 5>2+ 4 25 4/(5Y
PV 5 35D 5\D 3D T\D

where

(

N——

s
D

—1) /3 arctany/3/ (723%—1) for >§5:<S/D

- /3 arccoth, /3/ (1 - 723%) for —/5 < S/D < 325 (23)

(1-%3) /3 arctanh 3/ (1~ 28 for /D < 5
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Let us note that dividing (22a) by (22b) we can express the difference —1 /90+1/92
as a function of S/D

<_i+}_)=£2__4,__4_§_4 5\’
go = 92 35 15 35D 15\D

_2BD_ 28 4 (%)2 F(%) (29

3 ST ED 5+
In order to consider the latter case we calculate Eq. (21) numerically. Usmg the
obtained relation between cos(y) and |S/D| and solving Eqgs. (19a) and (19b) we
can obtain a relation between exp(—1/g0)/A and exp(—1/g2)/A and |S/D] as a
function of exp(—1/go + 1/g2) (cf. Fig. 3).

In order to eliminate unstable states from the obtained results we have to find
the thermodynamic potential difference. After including Eq. (16) both Eqgs. (10)
and (11) reduce to the form

AR = —(1/2)N(0)4% (IS + |D|?) = —(1/2)N (0)A® (25)
and the condition (12) becomes quite equivalent to Egs. (20) and (21). We re-
mind that in real physical systems the thermodynamic potential must achieve a
minimum, hence merely such states could be realized.

Note that |S] and |D| are dependent. So employing relation (9) we can elim-
inate real S or D parameter from Egs. (22)-(24) and r.h.s. of these equations
become the functions of only one variable whose variation from —1 to 1 corre-
sponds to a possible pairing state. :

In order to derive the value of the energy gap A and its structure (the value of

S and D parameters) in dependence on go and g we have to prove that Eqs. (19)
after including Eqgs. (20) and (21) possess a solution.
. In Fig. 1 three sets of solutions are presented. The thick-line curve defines
values of 1.h.s. of Egs. (22) obtained for the real D-parameter varying from -1 to 1.
The straight vertical line marks the isotropic solutions (S = 1, D = 0) obtained
from Eq. (17), which are independent of go. The double-line curve appears as a
solution of Egs. (19) after including Eq. (21) when S/D is the complex number.
The distinguished points correspond to the following values |D| and cos(y), re-
spectively: A(1,-1), B(0.98,~1), C(0,0), D(0, not defined), E(0.95,-1), F(0.79,-1),
G(0,£1), H(0.19,1), I(1,1).

Moreover we introduce the straight dash line for which we can write the
following relation:

tan @ = exp(1/g0 — 1/g2), (26)
which is independent of hw and A. This line crosses the presented plot in a few
spots. It means that for the fixed value of the pairing parameters go and g, several
non-equivalent states satisfy the gap equation (1). However, we must remember
that the values of A ¢an differ for each state even if gg and g are fixed. Thus
according to Eq. (25) the stable state is the one for which the value of A is the

greatest. In Fig. 1 it is marked by X. It causes that we can eliminate unstable state
solutions from our further consideration and concentrate calculation in the region
of the solution given by the ABCD curve. Note that the values of A obtained in

+
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- 2ho*exp(-1/g,)/A

2ho*exp(-1/g)/A

Fig. 1. The regimes of existence of various solutions for the energy gap equation. The
solution with D = 0 is marked with a thin line, the one with real S/D with a thick line,
and the one with complex S/D with a double line.

00 04 08 12
exp(—l/gn)

Fig. 2. The equi-energetic lines of the energy gap value A/(2hw) as functions of
exp (—1/go) and exp (—1/g2) in dimensionless units.

the limit cases (BCS and D-wave pairing) are in agreement with the well-known
results, and we get

A=y 2hwexp (-1/g:), (27)
where 79 = 1 and 42 = 1.27 concern BCS and D-wave states, respectively.

In Fig. 2 we present the equi-energetic lines of reduced A for chosen values
varying from 0 to above 1. In order to derive the value of A for the fixed values g
and g, we can employ Eq. (27) where coefficients 4; must be estimated, e.g. from
Fig. 1. Note that the values of each coefficients v; increase from their limit values
to infinity if the other pairing parameter becomes greater.

In Fig. 3 the values of D-parameter (thick line) and cos(y) (thin line) as
functions of exp (—1/go + 1/g2) are presented. Note that the D-parameter vanishes
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Fig. 3. The value of |D| and cos(y) as functions of exp (—1/go + 1/g2). For g2 < go
D =0 and cos(p) is not defined.

D=1

Fig. 4. Exemplary shapes of the energy gap for six decreasing values of |D|. Note that
the case |D| = 1 presents the pure D-wave state and |D| = 0 is the isotropic BCS state.

if g2 < go. So too weak effects of D-wave pairing (g2 < go) cannot modify the BCS
state.

The above calculations allow us to establish a general form of the energy
gap for the case under consideration

Ap=4 [\/1 — DZexp(ie) + |D|(v5/2) (3k2 — 1)] , (28)

where the parameter 4, |D| and ¢ can be univocally computed for the fixed go
and g after employing the results presented in Figs. 2 and 3. In Fig. 4 we exemplify
the energy-gap shape (|AZ|) of composed state for six values of | D] (1,0.9,0.8,0.6,

0.4,0). On the other hand the obtained results permit to derive the pairing pa-

rameters go and g2 if we know the value and shape of the energy gap. '
Moreover, we stated that some other states could be created in the systems

under consideration but they are not stable at 7' = 0. That suggests that the
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influence of the temperature causes the enrichment of the energy gap structure.
The research in the temperature regime should allow us to find relations between
the critical temperature and the other parameters of the system.

3. Conclusions

The established relations and presented results reveal influence of the D-wave
pairing interaction harmonic on a ground state of superconductor. We showed
that the isotropic BCS state is ever realized in superconductors if go < go. It
means that the D-wave pairing interaction harmonic occurs probably in many
BCS superconductors but it does not manifest its presence in a ground state.
However each modification of a superconducting structure caused by pressure,
impurities or geometry can change a relation between gg and gs in such a way that
the SD-composed state appears.
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