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We analyze propagation of ultra short light pulses in a transparent, dis-
persive, nonlinear medium. A general formula for femtosecond wave packet
evolution is developed and applied to specific problems. Theoretical and
experimental results for wave packet distortion by lenses, wave packet ro-
tation in birefringent media and group velocity matching in sum frequency
generation are presented. Numerical results for splitting of femtosecond wave
packets in dispersive Kerr media are also presented.
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1. Introduction

Developments in laser mode-locking techniques during the last decade led to
generation of pulses as short as 7.5 fs (1 fs = 10 -15 s) directly from Ti:sapphire
laser [1] . By employing pulse compression techniques one can achieve even shorter
pulses with the current record at less than 5 fs level [2, 3]. Progress in this field has
been very fast, especially in the 70-ties and 80-ties, as illustrated in Fig. 1 which
presents the history of ultra short pulse generation in the last 25 years. Originally,
the most common femtosecond systems were based on organic dyes as laser mate-
rials, however with an advent of fs Ti:sapphire lasers [4] in the early 90-ties a solid
state technology is available. Currently, systems operating at 20-30 fs range are
routine and commercial systems with sub-20 fs capabilities are on the market.

A femtosecond light pulse propagating in a given medium can be visualized
as a wave packet of electro-magnetic radiation that moves with its group velocity
and at the same time changes its shape due to the interaction with the medium. We
find the wave packet picture appealing and we will use the wave packet language
throughout this paper. One of the simplest experiments with femtosecond light
pulses involves propagation of such wave packets through a transparent medium,
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for example an optical window made of glass. Such experiments are omnipresent.
They are performed every day in ultra fast optics laboratories, often without a
conscious thought on the experimentalist part, whenever an ultrashort light pulse
has to be delivered from the laser system to the sample and, on its way, passes
through a lens or a glass cell window. Since the result of many experiments with
ultra short light pulses, especially in a nonlinear regime, strongly depends on the
details of the pulse such as its time and/or spatial properties it is quite important
to understand what happens to such a pulse on its way from the laser system to
the sample. When considering propagation of a low intensity monochromatic light
beam in a dielectric one only has to account for its index of refraction which modi-
fies the diffraction of the beam by changing the propagation constant with respect
to that for vacuum. What makes the propagation of femtosecond pulses different?
First, by the virtue of their brevity, the femtosecond pulses have broad spectrum.
Because of that, a significant pulse shaping is observed whenever they propagate
in a dispersive medium. Second, the peak intensity can be quite high even with a
moderate pulse energy and average power. Therefore 3-rd order processes (allowed
in a medium of any symmetry) cannot be neglected. For instance, intensity depen-
dent refraction index gives rise to self-phase modulation and self-focusing which
influence the spectrum of the pulse and its spatio-temporal characteristics, respec-
tively. It is a well-known phenomenon leading, among other things, to formation
of optical solitons in fibers [5, 6] and white light continuum generation [7]. As is
often the case in nonlinear problems, three phenomena: diffraction, dispersion and
self-focusing are entangled; one can study their effects separately only in a limited
number of cases when one of them dominates. However, in most cases numerical
methods have to be employed as a method of solution. This paper is organized as
follows. In Sec. 2 we present a general form of the propagation equation for a fem-
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tosecond wave packet in a transparent, dispersive and nonlinear medium. Section 3
provides examples of the wave packet shaping effects in a linear regime — both
theoretical and experimental data are provided. In Sec. 4 we analyze nonlinear
propagation regime and present the results of numerical calculations illustrating a
complex wave packet evolution.

2. Propagation equation

We start by representing the scalar electric field E(v, t) of the light wave
packet as an integral of its Fourier components

each characterized by its amplitude (k), wave vector k and frequency ω(k).
Out of four variables, i.e. frequency and three components of the wave vector
that describe each Fourier component, only three are independent because of the
dispersion relation ω = ω(k). Next we represent the field amplitude as a product
of a slowly varying envelope (SVE) and a phase factor

where we assumed that the wave vectors are grouped around a central value k0
and correspondingly the frequencies form a band around the central frequency
ω 0 = ω(k0). This leads to the propagation equation for slowly varying enve-
lope [8-11]

In the last equation a unit length vector s0 = k0/|k0|assumed to be in the direction
of z coordinate has been introduced. An additional term iγnl |Α| 2 Α has also been
added. It describes the effect of the 3-rd order nonlinearity (Kerr type nonlinearity)
of the medium. The integral over kz can be replaced by an integral over ω when
the dispersion relation is taken into account:

where n is the index of refraction and s = k/ | k | . This particular form of expression
for n allows application of this approach to both isotropic and anisotropic media.
Since no assumptions about the form of A(r, t) have been made Eq. (3) is exact.
A partial differential equation for A(r, t) can also be obtained by using Eq. (3).
This is done by expanding /r in powers of k x , ky and (ω - ω0) and replacing these
variables with i∂/∂x, i8/8y and -i∂/∂t, respectively. Keeping terms up to the
second order gives for a uniaxial birefringent medium [11]
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The coefficients ß1 = 1/Vg = ∂k/∂ω and β2 = ∂β1/∂ω describe the effects of
group velocity and group velocity dispersion, respectively, γ xx and γyy are re-
sponsible for the diffraction of the wave packet, γx reflects beam walk-off in a
birefringent medium while γtx was found to be responsible for the rotation of the
wave packet [9]. It is worth mentioning that the coefficients 'x and γtx vanish
for isotropic medium. One can easily generalize Eq. (4) by adding higher order
terms. For the sake of clarity we will not do it here but rather refer an interested
reader to the original papers [8-11]. Either of the two equations (Eq. (3) or the
expanded version of Eq. (4)) can be numerically integrated. It should be pointed
out that Eq. (4) is an approximation of Eq. (3) and in order to make them totally
equivalent one would have to include terms of all orders into Eq. (4). This clearly
is not a practical approach. We found however that in all cases studied, the results
of either approach are almost identical if the terms up to 3-rd order are included
into Eq. (4). Before we present the results of such integration let us consider some
simpler cases.

3. Linear propagation: 1 -D and 3 -D effects
First, let us analyze Eq. (4) in a 1-dimensional case. Assume that Α(r, t) =

A(z, t). This is the case whenever light propagates in a single mode optical fiber
or the laser beam properties are such that it can be modeled as a one-dimensional
plane wave. In this case all derivatives with respect to x and y vanish and we are
left with a well-known nonlinear Schrödinger equation of the following form:

This equation is easy to solve if we keep only the first term on the right side. One
can verify that any function A(z, t) that has a form A(z, z/νg) constitutes a proper
solution. This means that in the lowest order approximation a 1-dimensional wave
packet can be of any shape and it propagates without distortions with the speed
equal to the group velocity in a given medium. It may seem to be a trivial state-
ment, which it is, but a one with significant consequences in many experiments.
We will illustrate this with two examples.

The first example of the havoc that the group velocity can play with an
experiment is a wave packet distortion by lenses. It has been recognized quite a
long time ago that the difference between phase and group velocities can lead to
significant effects upon propagation of femtosecond pulses through lenses [12-13].
If a collimated beam, i.e. a flat wave packet, is focused with a chromatic lens
then the phase surfaces behind the lens are spherical but the shape of the wave
packet is not. In the UV-visible range the group velocity is smaller than the phase
velocity for optical glasses. Because the wave packet propagates through more
glass in the center of the beam where the lens is the thickest it accumulates more
group delay than phase delay there while at the edges of the lens the two delays
are almost equal. As a result the wave packet behind the lens is distorted; its
central part lags behind the edges. This in turn causes that the intensity of light
in the focus no longer follows the intensity time profile of the input pulse because
different radial zones of the wave packet contribute to it at different times. It is
important to be able to measure this distortion, especially for complex lenses such
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as microscope objectives for which direct calculations may be quite difficult and
which are commonly used in applications such as two-photon microscopy [14]. We
have designed an interferometric method to measure the wave packet distortion
in lenses [15]. The experimental set-up is shown in Fig. 2. The main part of the
system is a modified Michelson interferometer with one arm serving as a reference
arm and the other arm including the tested lens L. A collimated beam from a
femtosecond Ti:sapphire laser was used as an input beam. Its diameter was big
enough to fill the aperture of the lens. As indicated in the figure, at the output
of the interferometer a flat reference wave packet interferes with a wave packet
distorted by a double passage through the lens. The interference fringes are visible
only in the regions where the two wave packets overlap for a given delay defined
by the position of the mirror M1. As this mirror is scanned the fringes appear and
disappear in different radial zones of the output beam. A detector placed behind
a smahl pinhole was used to measure the fringe visibility at different distances
from the beam center. For any given position of the pinhole we measured the
delay corresponding to maximum fringe visibility and thus found the shape (we
assume cylindrical symmetry) of the distorted wave packet. An example of the
results is presented in Fig. 3. It shows the relative group delay as a function of
the radial position on a 40x microscope objective. As one can see the parts of the
wave packet propagating close to the edges of the lens are advanced by more than
30 fs with respect to the center of the wave packet. We found it quite amusing
that an addition of a cover glass (170 µm thick) between the lens and the curved
mirror M2 significantly improved the performance of the objective. Apparently
the objective has been designed to work with the cover glass!

Asa second example, consider a frequency mixing experiment with femtosec-
ond laser pulses. A crystal with χ(2) nonlinearity is illuminated by two collinear
uhtra short laser pulses with frequencie8 ω 1 and ω 2 and a sum frequency at
ω3 = ω1 + ω2 is generated. Since the three frequencies involved in the process
are quite different, the group velocities of the corresponding pulses are differ-
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ent, too. ThiS has a detrimental effect on the sum frequency generation process. If
ω 1 ≠ ω2 then vg(ω1) ≠ 1 g('2) in a dispersive medium. As a result the two input
pulses propagate with different speeds. This limits the range over which the input
pulses overlap which in turn limits the efficiency of the process. In addition, the
output pulse at ω3 propagates at yet another (and usually very different) speed.
As a result, the output pulse is longer than the input pulses because contributions
from different slices of the crystal arrive at the output face at different times. The
latter effect remains even in the case of second harmonic generation (SHG) when
a single femtosecond pulse is used to produce another pulse at twice the input
frequency. The problem of group velocity mismatch could be significantly allevi-
ated if a frequency mixing scheme which ensures both phase matching (PM) and
group velocity matching (GVM) could be found. We found that this can be actu-
ally achieved in some cases when type I non-collinear sum frequency generation
scheme is applied [16, 17].

Figure 4 illustrates the basic idea. In the UV-visible range the group ve-
locity in nonlinear crystals decreases with increasing frequency and thus the sum
frequency pulse at ω3 lags behind the driving pulses at ω 1 and ω2. Therefore with
a suitable choice of the angles Ψ1 and ψ2 the projections of vgl, Vg2 and ßg3 on k3
can be made equal. This means that the three pulses have the same components
of the group velocity along the propagation direction and they do not separate as
they propagate. It is not obvious that group velocity matching and phase match-
ing can be achieved in a given crystal for given wavelengths of the input pulses.
Whether this is possible or not depends on dispersion properties of the particu-
lar nonlinear birefringent crystal selected. Figure 5 shows the results of numerical
calculations for β-barium borate (BBO) crystal in the range of fundamental wave-
lengths corresponding to the tunability range of Ti:sapphire femtosecond oscilla-
tor. Two processes have been considered: non-collinear type I SHG (ω + ω → 2ω)
and non-collinear type I third harmonic generation (THG) (ω + 2ω → 3ω). The
two cases are quite different. For SHG the problem involves solving two equations
(phase matching condition and group velocity matching condition) for two vari-
ables ψ = Ψ1 = Ψ2 and O (Θ is an angle between k3 and the optic axis of the
crystal) and the solutions are exact if they exist. In the case of THG there are
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3 variables Ψ ι , ψ2, and θ and only two equations. Phase matching condition has
to be fuhfilled but then group velocity matching is not exact. However, the results
of numerical cahculations indicate that the residual group velocity mismatch in
our scheme can be as small as one percent of that for a standard collinear THG
case. As one can see in Fig. 5 PM and GVM conditions can be achieved for SHG
in BBO over an entire tuning range of Ti:sapphire laser. Similarly exact PM and
approximate GVM are possible for THG process in a somewhat smaller range of
wavelengths.
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In order to see the effect of GVM on frequency mixing with femtosecond
pulses we have numerically integrated the nonlinear equations for the amplitudes
of the three fields

where Α is the amplitude, ωi — the frequency, ni — the refraction index of the
i-th field and β2i = ∂2 ki/∂ω 2 . Α reference frame moving with the group velocity
of the ω 1 pulse is used and ∆βιi = 1/Vgi — 1/Vg 1 for i = 2, 3.

The results of the integration are shown in Fig. 6. One can clearhy see that
for reasonable experimental conditions the effect of group velocity mismatch is
not negligible. Second harmonic pulses in a GVM non-collinear scheme can be
significantly shorter than those achievable in a standard collinear scheme.

This has been verified in an experiment performed with approximately 30 f8
long pulses from a Ti:sapphire laser and a 0.5 mm long BBO crystal. The second
harmonic has been generated using two different approaches: a standard collinear
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SHG and a non-collinear GVM SHG. In each case the duration of the second
harmonic pulse has been measured by intensity cross-correlation with the input
laser pulse. Results of the cross-correlation measurements are shown in Fig. 7. For
the standard collinear scheme the output pulse duration is almost twice of that for
the laser pulse. At the same time the results show that for the GVM scheme second
harmonic pulses that are shorter than the input laser pulses, can be achieved. This
is not surprising since in an ideal case of SHG without saturation one should expect
the second harmonic pulse to be shorter than the input pulse by a factor of  √2

As a final example of linear propagation effects let us consider a femtosecond
wave packet propagating in a birefringent dispersive medium. If the light propa-
gates as an extraordinary wave then the terms γx and γtx in Eq. (4) are non-zero.
While the first one means that the Poynting vector in such a medium is not parallel
to the wave vector (a fact known for at least a century) the existence and meaning
of the second one have been found and explained only recently [8, 9]. Numerical
integration of Eq. (4) shows that because of this term the wave packet, which is
tightly focused when it enters an uniaxial birefringent crystal, rotates around the
axis that is perpendicular to the plane defined by optic axis of the crystal and the
k vector. The effect can be explained in a way very similar to that employed to
explain the wave packet distortion by lenses. Because of the tight focusing the ex-
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panding beam contains wave vectors that form different angles with the optic axis
of the crystal. Since, for an extraordinary wave, the index of refraction depends on
this angle, both phase and group velocities are also functions of the same angle.
What is even more important, the difference between phase velocity and group ve-
locity varies as a function of this angle. As a result, one side of the wave packet lags
more behind the phase fronts than the other side which leads to the wave packet
rotation. If such a pulse is recollimated after it exits the crystal, it will look skewed
— while the phase fronts will be perpendicular to the direction of propagation, the
wave packet itself will be not, simply because the difference between phase and
group delays will be different at its opposite sides. The theoretical predictions for
the wave packet rotation have been verified experimentally in a set-up [18] similar
to the one shown in Fig. 2. The set-up has been inodified to include two identical
1:1 telescopes, one in each arm. Two 1 mm thick rutile crystals have been placed,
one at the focus of each telescope. The wave packets propagating in the crystals
experience rotation as described above. We have placed the crystals in both arms
to cancel all the distortions of the wave packets that are not due to the rotation in
the crystal. However the crystals were set in such a way that the two wave packets
experienced rotation in opposite directions and thus did not overlap perfectly in
space. By recording the fringe visibility at different positions in the output beam
versus the delay between two arms of the interferometer we were able to measure
the wave packet rotation.

The results of the experiment (points) are compared to the theoretically
calculated wave packet rotation (line) in Fig. 8. It is clear that our model for wave
packet rotation is at least adequate as indicated by the agreement of its predictions
with the experimental results.
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To complete our analysis of the linear propagation we should briefly mention
the effects of the group velocity dispersion. When the group velocity dispersion
term —(i/2)β2∂2 Α/∂t 2 is also included into the analysis of Eq. (5) the pulse shape
does not remain constant during propagation. Instead, because different Fourier
components of the pulse experience different group delays, the result is a pulse
with varying shape and time dependent frequency. In this approximation the light
frequency varies linearly with time and thus the pulse is said to have a linear chirp.
The effect can be quite severe. For instance, a 25 fs long Fourier limited pulse at
630 nm doubles its duration upon propagation through 10 mm of fused silica. The
reshaping of femtosecond pulses due to propagation in dispersive media means that
in any given experiment we cannot take the pulse duration for granted. Even if we
verify that the pulse is short when it exits the laser system, it can be quite longer
when it interacts with our sample simply because there was some glass on the way
from the laser to the interaction region! An addition of higher order dispersion
terms leads to even more significant pulse reshaping and a nonlinear chirp.

4. Nonlinear propagation

Let us start again with 1-dimensional case. The nonlinear term iγnI|Α| 2 Α
in Eq. (5) describes the effect of intensity dependent index of refraction n(A) =
n0 + γι|Α| 2 . This introduces a time dependent phase and nonlinear chirp without
affecting the pulse shape. As a result, new frequencies are generated and the pulse
spectrum broadened. Spectrum broadening in Kerr media can be combined with
a group velocity dispersion to produce pulses that are significantly shorter tnan
the original laser pulses in a technique called pulse compression [19]. When both
group velocity dispersion and Kerr nonlinearity terms are included the net result
depends on the signs of β2 and coefficients. If the two termS have the same
sign the chirp due to dispersion and the one due to Kerr nonlinearity have the
same sign, too. As a result the pulse experiences reshaping and a combined chirp.
On the other hand, if sgn(β2) = -sgn(γn l) then there exist stable solutions of the
propagation equation [5]. Such solutions are called optical solitons. Because they
can propagate over long distances in optical fibers without changes in shape they
are of particular interest to engineers designing optical communication systems.
In one of the experiments in this field picosecond pulses have been propagated in
a fiber of length 1.8x 10 11 m, i.e. further than from the Earth to the Sun [20].

In a 3-D case the interplay between dispersion and nonlinearity is augmented
by an additional effect, namely a competition between diffraction and self-focusing.
While the first tends to increase the transverse dimensions of the wave packet, the
latter does exactly the opposite. It has been known for at least 30 years [21] that
for long pulses the ultimate fate of a beam propagating in a Kerr medium is
determined by its power Ρ. For P < Pc (Ρc is called critical power and depends on
the medium properties only) diffraction wins and the beam defocuses. If, however,
P > Pc self-focusing prevails and catastrophic beam collapse is observed. This is
not true for femtosecond pulses. As has been pointed out by several groups [22-25]
in this case one has to take into account dispersion effects as well. Because of that
the wave packet with a power higher than the critical power does not collapse;
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instead it undergoes a complex evolution both in time and space. In order to
illustrate this evolution let us turn back to Eq. (4).

For a wave packet that is Gaussian both in time and transverse spatial
distribution propagating in an isotropic medium, it is convenient to rewrite Eq. (4)
in a slightly different form [11]

where three new parameters all of length dimension have been introduced: dis-
persion length Lds = τ20 /β2, diffraction length Ldf = γxxw20/2 = πw20/λ0, and
nonlinear length Lnl = (γnl|Α |) -1 with τ0, w0 , and Α0 being the duration, trans-
verse size, and amplitude of the wave packet, respectively. The advantage of such
scaling is that it provides three parameters that can be easily compared to each
other which in turn enables one to evaluate the strength of the three phenomena
they represent (the smaller the coefficient the more important the corresponding
term in Eq. (7). The meaning of these parameters is as follows: Lds is a distance
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which takes the pulse to double its duration because of the medium dispersion,
Ldf is the distance required for the pulse to double its area as a result of diffrac-
tion, and Lnl is the self-focusing distance. For transparent media the inequality
Lds » Ln! , Ldf typically holds. It means that the dispersion effects constitute only
a small correction to the basic wave packet evolution defined by diffraction and
self-focusing. However, the results of integration of Eq. (7) show that, small as it
is, the dispersion plays a crucial role in propagation of a femtosecond wave packet.
An example of the wave packet evolution obtained by direct integration of Eq. (3)
is shown in Fig. 9 (the results were very similar when Eq. (7) with 3-rd order
terms included was integrated). In this particular case it was assumed that the
wave packet size in they direction is much larger than its size in the x direction.
This not only made the computation simpler but also enabled us to present the
results as a 3-D graphs. The following parameters have been assumed: material —
fused silica (Lds = 240 mm), pulse duration — 66 fs, pulse wavelength — 800 nm,
beam size — 32 m (Ldf = 4 mm), pulse intensity — 70 GW/cn2 (Ll = 2 mm).
The power of the beam is about 2.2P. A long pulse of this power would self-focus
and collapse. However the femtosecond wave packet considered here displays a
quite different behavior. It starts to self-focus as indicated by the elongated shape
in Fig. 9a but then the process is arrested and the pulse splits into two pulses as
shown in Figs. 9c and d. It is instructive to look at the spatio-temporal spectrum
of the wave packet shown in Fig. 10. Starting from a smooth Guassian shape the
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spectrum evolves through a "Mexican hat" structure (Fig. 10c) and then develops
three spatial lobes. The central lobe (around k x = 0) contains two peaks in the
frequency distribution, one at the frequencies lower than the input pulse frequency
and another which is shifted towards higher frequencies. The two side lobes have
broad spectra centered at the input pulse frequency. The results depend, as one
might expect for a nonlinear problem, on a particular choice of parameters, for
example the sign and magnitude of the β2 coemcient, but from the numericah
integration results some general conclusions about the role of the dispersion can
be drawn. For the case illustrated in Figs. 9 and 10 the process starts with the
self-focusing. The self-focusing is the strongest at ct = 0 (Fig. 9a) simply because
the intensity is the highest there. Thus the intensity at the center of the wave
packet increases rapidly and so does the width of spectrum due to self-phase mod-
ulation. Once the spectrum is broad enough the dispersion shifts lower frequencies
towards the head of the pulse and higher frequencies towards its tail. This lowers
the intensity at the center of the wave packet and prevents it from a collapse. At
the same time the part of the wave packet that has been focused strongly diffracts
to form the side lobes in the spectrum as discussed above. The pulse splitting
shown in Fig. 9 has been recently observed in an experiment [26].

In conclusion, we have analyzed some aspects of linear and nonlinear prop-
agation of femtosecond light wave packets in transparent, dispersive nonlinear
media. In particular, we have shown the effects of group velocity on propagation
of such wave packets through lenses, wave packet rotation in birefringent media
and sum frequency generation without group velocity mismatch. Numerical results
showing wave packet splitting were also presented.
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