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We discuss our numerical studies of the low energy excitations of trapped
Bose condensates using a Bogoliubov-Hartree treatment. In the zero tem-
perature limit, the lowest few excitation frequencies calculated within the
Bogoliubov approximation agree well with the experimental data. Finite
temperature results obtained using the Popov approximation display quali-
tative differences from the experimental data close to the critical temperature
region. Details of our numerical approach are presented and comparison with
other results is discussed.
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1. Introduction
A little over two years ago a new phase of research was entered by experi-

mentalists pursuing research in the Bose—Einstein condensation (BEC). Built upon
cumulative research advances in laser cooling and trapping [1] and in evaporative
cooling [2], .BEC was first observed in 87Rb by a collaboration at JILA [3]. Shortly
thereafter, a group at Rice University reported apparent evidence of quantum de-
generacy with 7Li [4], and a group at MIT developed techniques for rapid produc-
tion of large condensates containing about a million 23 Νa atoms [5]. Tremendous
progress has been made in the past two years: many single particle properties of
trapped condensates have been measured; direct non-destructive optical imaging
techniques have been developed [6]; several of the low-lying collective excitation
modes have been detected [7, 8]. Recently, the macroscopic coherence properties
of the condensate were displayed in a spectacular fashion with the demonstration
of interference between two condensates [9], and the suppression of the collisional
losses from the inelastic collisions [10] due to the multi-particle correlations. Rudi-
mentary atom lasers with pulsed output couplers have also been reported [9, 11],
and the sound velocities of the condensate have been measured [12].
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The theoretical description of these experimental systems has also been an
active field. Particular interest has been focused on the calculation of excitation
spectra for condensates. In the zero temperature limit, the Bogoliubov-de Gennes
equations that govern the wave functions for quasi-particles have been studied
by several groups [13, 14]. An (analytic) asymptotic expression for the eigenfre-
quencies valid in the Thomas-Fermi/hydrodynamic limit was first presented by
Stringari [15]. A variational approach was developed in Ref. [16]. A dynamical
variational approach was also applied by Perez-García et al. [17]. More recent
studies can be found in Refs. [18-21]. All of these studies describe the condensate
within a mean-field approximation with excitations corresponding to the poles of
the single particle Green function. Multi-particle excitations and related correla-
tion effects have not been carefully addressed yet, although an atomic structure
approach based on the Hartree—Fock, random phase approximation, and configu-
ration interaction approach as presented in [22], can be used to study such corre-
lation effects by including multi-excitation configurations [23]. The finite temper-
ature mean-field Bogoliubov—Hartree (BH) approach to the collective excitations
involves a great deal of numerical effort and only limited results are available at
the moment [24]. A detailed comparison with the experimental data [8] is yet to
be performed.

In this paper we present the numerical procedure we have developed for
the study of low energy excitations of trapped Bose condensates [25]. The paper
is organized as follows. We start by giving an overview of the field theoretical
description of the condensate. In Sec. 3 we follow with an outline of the numerical
procedures we have developed. The results and discussions are given in Sec. 4.
Finally, we conclude in Sec. 5.

2. Bogoliubov-Hartree theory

Several versions of the Bogoliubov—Hartree theory exist in the literature [26]
but we closely follow the approach of Ref. [25], which is based on the linearization
of the 2nd-quantized Hamiltonian around a coherent state (or a c-number) of the
atomic fields. This approach fixes the overall phase (by breaking the global U(1)
gauge invariance) of the mean atomic fields and keeps quadratic terms of the small
quantum fluctuations (around this coherent state) in the Hamiltonian. For trapped
systems, these quantum fluctuations cause the initial fixed phase of the atom field
to diffuse, which can be understood mathematically as due to the degeneracy of
the zero mode in the quasi-particle excitation spectra. For a detailed discussion of
the zero mode, see Ref. [27]. Recently approaches which conserve the number of
particles (and therefore do not fix the phase) have been presented [28].

The second quantized Hamiltonian for a system of N spinless bosonic atoms
trapped in a potential %(r) is given by [25, 26]
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where Ψ(r) and ^j^it(r) are atomic (bosonic) annihilation and creation fields, υ0 =
4πħ 2 αsc /Μ, with Μ being the atomic mass, and α sp — the scattering length of the
atom–atom interaction. This Hamiltonian in fact describes the free energy since
the chemical potential μ is used to guarantee the conservation of the average of
the total number of atoms N = f dr ^j^it(r)0(r). The aim of the BR approach is
to describe the single particle excitations of the system in terms of  non-interacting
quasiparticles. Mathematically we try to cast the Hamiltonian (2.1) into the form

where 9t (ĝn ) are the quasiparticle creation (annihilation) operators which satisfy
the standard bosonic commutation relations and the quasiparticle index,
n = 0, 1, 2, ..., labels the positive eigenfrequencies Wn arranged in ascending order.
Therefore, the density matrix for quasiparticles at equilibrium is described by the
Bose–Einstein distribution

where ^n depend on the chemical potential µ and Z is the partition function.
At zero temperature the BR approach takes its simplest form, the Bogoliubov

approximation, which starts with the assumption

where the c-number condensate wave function ψ0(r) is assumed to be real (with-
out loss of generality) and normalized such that f dr|ψ0(r)12 = 1, and N0 is the
number of particles in the condensate. In Eq. (2.4), δΨ(r) denotes the quantum
fluctuation which obeys the same standard bosonic commutation relations as Ψ(r).
We substitute Eq. (2.4) into Eq. (2.1) and neglect both 3-rd and 4-th order fluctua-
tion terms. The linear fluctuation terms are vanishing provided that ψ0 (r) satisfies
the nonlinear Schrödinger equation (NLSE), i.e.

where we have defined .0 Ξ - 4?'°2 +%(r) - μ, and the condensate density p0(r)
N0|ψ0(r) | 2 . The resulting linearized effective Hamiltonian

may be diagonalized in the representation of the quasiparticle annihilation opera-
tors

for k = 1, 2, 3, ... and their Hermitian conjugates, a quasiparticle creation opera-

tors 9k . The Uk (r) and Vk (r) are the mode functions of the quasiparticles which
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have to be determined. To determine the functions U(r) and Vn(r) (for n # 0) we
solve [,H] = ħωngn , which is equivalent to the coupled Bogoliubov-de Gennes
equations

where ∆0 (r) = N0 ψ20(r). There is a time-reversal symmetry associated with (2.8).
If the set {U, (r), Vn (r)} constitutes a solution for energy +ħωn then the set
{V*n(r),U*n(r)} is also a solution but for energy —ħ [26]. All of the non-zero

eigenvalues are thus paired and real. To have 9k and ĝk fulfill bosonic commuta-

tion relations, [k,'] = δkk , [9k, 9k'] = 0, the mode functions have to obey the
orthonormality condition [26],

The presence of a zero mode solution to Eq. (2.8) requires the introduction
of the momentum operator P, defined according to [27] as,

The zero mode and the above associated momentum operator describe collective
motion without restoring force of the condensate [29]. Therefore, P commutes with
all ĝk , and 9k operators, i.e., f drψ 0 (r)[Uk(r)— Vk (r)] = 0 for k # 0. The conjugate
"position" operator is defined as

which has a unique solution, since the operator on the lhs of Eq. (2.13) is clearly
positive-definite. The coefficient α is related to the rate of change of the conden-
sate phase. The annihilation operator for the zero mode is ĝ 0 = (P-iQ)/2 Its
associated mode functions are given by
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The total atomic field can now be expanded as

assuming the validity of the linearization approximation. Since the mean value of
Ψ(r) is Ν ψ0(r), this can happen if and only if the system is in the coherent
state N0 ) of all the quasiparticle operators 9,kk/N0) = Ζk| N0 , such that

The above condition implies that zk = Ν f drψ0(ι)[Uk(r)+Vk(r)] and 4 = zk .

In addition to the collective excitation frequencies ωn , several other quanti-
ties are of potential interest. The total energy of the system (at T = 0, the ground
state) of trapped atoms is given by

which may be measured as the total release energy by turning off the trapping
potential [30]. The depletion of the condensate (caused by the inter-atomic inter-
actions) at zero temperature is [311,

For T # 0, a self-consistent Bogoliubov-Hartree approach is usually adopted.
Within the present notation, we have to take into account the neglected 3rd and
4th order terms of δΨ(r) and δψt(r) and reduce these terms to quadratic operator
terms using a decorrelation approximation [26]. The resulting equations will then
be slightly different from those used for the zero temperature studies. First the
condensate wave function 7 ψ0(r) cannot in general be assumed to be real. In
fact, the analogue to the NLSE are two coupled equations

Similarly modifications to Eqs. (28) lead to

where we have used the notations



216 	 L. You et al.

is the Bose-Einstein distribution. We also obtain

Self-consistent solutions to the above Eqs. (2.19) and (2.20) can be obtained
through an iterative scheme. We note that the BR approximation as outlined here
is a conserving approximation, but it leads to an energy gap in the excitation
spectra [26]. Generally, one expects the low energy excitations for an interact-
ing Bose gas to be gapless since the zero mode will always be present in a U(1)
symmetry-breaking approach [26, 27]. A commonly adopted approximation to en-
force gapless excitation solutions is by setting ∆' = 0 in Eqs. (2.19) and (2.20).
Such an approach is called the Popov approximation. It is gapless but this is not a
conserving approximation. However, it has allowed preliminary numerical studies
of finite temperature excitation spectra [24]. Recently a U(1) symmetric approach
has also been developed. It is a conserving gapless formalism [28].

To study numerically the trapped Bose gas within the BH approach, one
may solve first the NLSE (2.5) or (2.19) for Ψ0 and then proceed to solve the
Bogoliubov-de Gennes equations (2.8) or (2.20) for Un and V. For non-zero tem-
peratures, self-consistency is enforced by iteration. The details of our numerical
approach are discussed in the following section.

3. The numerical approach

In this section we outline the details of our numerical approach to solve the
equations of the BR theory. We present the details of the calculation technique for
the zero temperature limit since it is in this limit that most of our results have been
obtained. A generalization to non-zero temperature calculations is straightforward.
Several groups have studied the zero temperature problem [13, 22, 24, 32]. Our
work relies on a basis expansion method that we have developed [25]. Since most
of the experimental traps can be well approximated at their minima by a harmonic
potential, Vt(r) = 1/2Μ(ω2xx2 + ω2yy2 + ω z 2) [3-5], we use a harmonic oscillator
basis. The basis is composed of product states of three separate one-dimensional
harmonic oscillators, φ(r) = Ψnr (r)φn (y)φn (z). All frequencies (energy terms)
are scaled in units of the smallest trap frequency, ω = min(ω x , ωy , ωz ), and the
three coordinates (x, y , z) are scaled to their ground state sizes (α x , α , α z ), where
αx'y 'z = Vħ/2Μω x  z . We also scale the scattering length αsc to α = ΝΑ/2Μω.
In these units the atom-atom interaction coupling takes the dimensionless form
N0u0 —, BπN0αsc,Vω xωyω.z .

Given a basis, one can write the condensate wave function (for T = 0) as
Ψ0 (r) = Σn α n φ n (r). Equations (2.5) and (2.8) can be rewritten in terms of their
matrix representation
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where

The NLSE (2.5) can now be written as a matrix eigenproblem

The Bogoliubov-de Gennes equations (2.8) can also be expressed similarly in terms
of Dnn' and £n '.

We find an approximate solution to Eq. (3.4) by taking a finite subset of the
basis functions (Ntot) and solving iteratively the above equation for μn and αn . The
proper choice of the subset is dictated by the relevant symmetries of the problem.
One also has to prove that the number of states within the subset basis is sufficient
to obtain a reasonable numerical solution. This is most easily done by checking the
change in the "final" answers as a function of the number of basis states used. The
iterative procedure is as follows. An initial guess αnold is used to generate the matrix
Dnn . The eigenvalues and eigenvectors of this matrix are found numerically and
the eigenvector corresponding to the lowest eigenvalue,  gen, is used to update
the input vector according to the rule

where typically n Ε [0, 1) is fixed for relatively weak interacting case, and adjusted
step by step (by-section) for other values of N0u0, The coefficient ć ensures proper
normalization. Then the vector αnnew is used as the new input for generating the
Dnn ' and the steps are repeated. If the procedure converges to a fixed point,

αnnew = αnoldthis point is a solution of Eq. (3.4). The lowest eigenvalue corresponds
to the chemical potential μ. The rate of convergence clearly depends on the value
of n chosen as well as the initial guess for the αn . We have achieved convergence to
a fixed point for a wide range of coupling strengths Nu0 by using an appropriate n.
The initial guess ^^0) was also varied with the parameter Nu0. For moderate values
of this parameter, tne noninteracting ground state was chosen as the initial guess.
For larger values of N0u0 one can neglect the kinetic energy term in the NLSE
[15, 18], often referred as the Thomas-Fermi approximation (TFA). In this limit,
the condensate wave function becomes the mirror image of the trapping potential,

where 8(x) is the step function, and μ is determined from the normalization con-
dition. The solution (3.6) was found to provide a better starting point for the
algorithm for large values of N0 u 0 .

The solution for the NLSE (3.4) is used to solve Eq. (2.8) for Un (r), Vn (r),
and ħ. For calculations of experimental interest, the computational effort is
bottle-necked at the evaluation of the Dnn' matrices. In using this approach, two
issues must be addressed: (1) a practical method of ordering the basis must be
found, i.e., a mapping nx , ny , n z —r n; (2) an efficient method of storing and
evaluating the integrals Inmn'm' must be identified.

Without loss of generality, we can assume all (Uk ,Vk) to be real. By intro-
ducing the sums and dIfferences as
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Equation (2.8) may be rewritten in a decoupled form [21] as

The latest form will reduce the size of the numerical computation.
The above equation yields the spectrum of quasiparticle excitations as the

eigenvalues of the product operator of G + 3Nυ0ψ20(r) and £ + Nu0ψ20(r). Math-
ematically, Sk(r) and Dk(r) correspond to the left- and right-eigenvectors of the
non-Hermitian product operator (although individual operators G + Nu0ψ20 and
The + 3Nu0ψ20 are Hermitian, they do not commute). In the TFA and working in
the classical phase space (r, p) with Εp p2 /2Μ, we can easily find the excitation
spectra as

where θ(μ—Vt) is the step function, and the region specified by θ(μ—Vt) is the inner
region of the condensate with phonon-like low energy collective excitations, while
the second line of θ(% - μ) corresponds to the outer region with no condensate
mean-field, where the excitations in phase space are particle-like.

We can also understand the mathematical reason for introduction of the con-
jugate wave function Φ0 described by Eq. (2.13). By putting = Ο in Eq. (3.8),
one may see that S0 (r) α ψ0 (r) is a solution, and in general we have
[C + 3Nυ0ψ20(r)] D0(r) α ψ0(r), which corresponds to D0 (r) α Φ0. A general
misleading of the previous works was to consider the trivial solution of D0(r) = Ο
which corresponds to the Goldstone mode of U 0 = V0 = ψ0(r).

3.1. Ordering of the basis states

We choose to order the basis states such that if n < n' then Εn = (nxωx +
ny ωy + n z ω z ) < Εn' = (nxωx + n'y ωy + nzωz ). Within the degeneracy manifolds
of Εn eigenvalue, the states are sorted by (1) increasing order of the largest of
the three 1D indices (n max = max(nx , ny , n2 )); (2) increasing order of the sec-
ond largest of the three 1D indices (nmid = sum(nx , ny , nz ) - max(nx , ny , nz ) -
min(nx , ny , n z )); (3) increasing in the nx index. This sorting indexes the basis
states in ascending order of energy using a single integer n index.

In numerical computations we further decompose the states into eight sec-
tors since the parity along each of the three coordinates (x, y , z) are good quantum
numbers [14]. The resulting parity sectors consists of (even x, even y, even z),
(odd x, even y, even z), (even x, odd y , odd z), etc. Then the numerical di-
agonalization may be performed in each of the sectors, provided that the mean
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field potential profiles due to p0(x, y , x), ρ'(x, y , x), Δ 0 (x, y , x), and Δ'(x, y , x) are
symmetric, which is indeed the case of the ground state of the NLSE (3.4). This
numerical strategy will reduce eight times the size of the problem, since the NLSE
(2.5) and the Bogoliubov—de Gennes equations (2.8) may be solved independently
in each of the parity sectors. The total computation effort is then determined by
the summation of all the Inmn',n' terms in the D' expression Eq. (3.2). One
may easily see that to compute all N 2tot matrix elements would, at least, require
^t t operations, since computing each of these matrix elements requires a sum-
mation over ^r t terms (matrix diagonalization scales with a lower power of N tοt
and we focus on leading order behavior). To perform self-consistent calculations
such as those required by the Popov approximation, each iterative loop demands

N4tot-order calculations. Therefore this repartition of the total basis, into the 8
distinct parity sectors, has some clear advantages.

3.2. Indexing the Iijkl

The evaluation of the basis coupling matrix elements Inmn'm' is also an ex-
tremely intensive numerically effort. Since in total there are N4totelements, we
mention that the evaluation may lead to a memory management problem too.
Various approaches have been developed [13, 25, 32]. The most common one is
based on the fast Gaussian quadrature algorithms. Analytic formulas are not very
useful since their numerical evaluation takes longer than a direct quadrature com-
putation. We note that, using the harmonic oscillator basis, there is an efficient
scheme for ordering the In,nn'„' that allows for both a compact storage as well as
efficient addressing and searching.

For a harmonic oscillator basis representation the matrix elements Iijkl are
a direct product of three one-dimensional matrix elements,

Further, the symmetry properties (to be discussed later) of the one-dimensional
matrix elements I1D are, obviously, the same and the values of the matrix elements
are related to each other by a scaling constant. This allows the full matrix element
to be calculated from a single set of I1D elements.

The stored values of I1D must be ordered and indexed. Because all harmonic
oscillator basis functions Ψh are real, any permutation of the indices will refer to
elements with equal values. Therefore, we assume that each element to be indexed
by four integers h 1 > h2 > h3 > h4 > Ο. Written in this way, the Ι ΙkΙlΙ elements
may be mapped into a one-dimensional array labeled by an single integer index
"ind"

This mapping is most easily explained by considering a simple case of an object
with two indices, lαb for a > b> Ο. For a given value of a, there are

elements preceding the next a + 1 elements which correspond to the possible
values of b. We associate with the original two indices a single number a, b —>
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1/2α(a + 1) + b(0 <b < a).Generalizing this procedure to higher numbers of
indices is straightforward. For the case of I1Dh1h2h3h4 25354with h1 > h2 > h3 > h4 >0
one finds

The use of this indexing procedure allows us to store economically all of the matrix
elements needed for our computations.

3.3. Evaluation of Ι 2h3h4

The wave function for a 1D-harmonic oscillator, of fundamental
frequency ω, in the coordinate representation is given by

We note that the quantity inside the square bracket in the rhs of Eq. (3.15) is
dimensionless and independent of the frequency of the harmonic oscillator. The
Μh 1 h 2 h 3 h4 integrals may be easily evaluated with the help of the generating func-
tion of the Hermite polynomials, i.e.,
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Then, the Mh1h2h3h4  are found to be the coefficients of the Taylor expansion of
the rhs of Eq. (3.18). Alternatively, numerical quadratures can be developed to
evaluate (3.16) [32]. Also, another equivalent analytical expression exists.

The above approach was initially implemented for the calculation of low
energy excitations within a mean-field Bogoliubov approximation [25]. At T = 0,
only a linear computation (one loop) of the Bogoliubov-de Gennes equations was
needed. To study the properties of the excitation spectra at a finite temperature
(e.g. with the Popov approximation), we are forced to develop new methods for
more efficient evaluation of the matrix elements given in Eq. (3.2). After dividing
the basis into 8 parity sectors, it became clear that there is indeed a systematic
way of reducing the overall computational effort for one loop from N 1-order to

N3tot1-order. We outline this approach in this subsection.
As we mentioned earlier, in a harmonic oscillator trap, quasiparticle states

have well defined parities with respect to their (x, y, z) coordinates. This can be
used to accomplish more effIcient evaluation of the matrix elements of the type

Eq. (3.2), i.e. of the following types of integrals:

At thermal equilibrium, the converged solutions for ψ0(r) and (Uk(r),Vk(r)) will
necessarily result in parity symmetric functions for p0 (r), p'(r), Δ0(r), ∆'(r). There-
fore, these fund ions themselves can be expanded into one particular 8 parity basis
sector: the (even x, even y, even z) basis set. As an example, we formally write

where φn are the complete symmetric basis set. Suppose that the expansion param-
eters bn are known, then the calculation of matrix elements as given in Eq. (3.20)
will involve products of three φ„ functions

which contain only three Hermite polynomials. We denote the corresponding terms
as Imnm' (Í„Dmß) and the reduced integral involving products of the Hermite
polynomial as Mn,nm' (compare with Mnmn'm' defined in (3.16)). The Mmnn,' is
given by the following identity [33]:
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for γ = 2/3 and h1 + h2 + h3 = 2k (even), where z = [2(1 — γ)] -1 , and (m) t

((m+t—1)!)!/(m-1)!are the Pochhammer symbols. For the case h1 + h2 + h3 = odd numbers
we have Μk1k2k3 = Ο. The above calculation (3.22) is now a simple summation
of Ntοt terms (instead of a double summation of N2to t terms as in Eq. (3.2)).
Therefore, the computation of all matrix elements requires only N3 tot operations.
Only two distinct possibilities exist for nonzero values of Mh1h2h3: (1) all indices
are even; (2) one index is even and the other two are odd. We denote them as Meee
and Meoo respectively, and they can be ordered into a one-dimensional array in a
manner similar to that detailed in Sec. 3.2.

One question remains: how do we find the expansion coefficients b n and
what is the associated computational effort? If one writes explicitly the form of
expansion (3.21) for any generic term in p0(r), p'(r), ∆0(r), or ∆'(r), then one
may see that these quantities involve terms proportional to ψ20(r) or |Uk(r)| 2 and
| Vk(r)| 2 . We assume that ψ0(r), Uk(r), and Vk(r) are written as Σn α φ (r) (these
are just the solutions for condensate or quasiparticle states in any of the 8 parity
sector basis sets). Then we have

which allows the following expression for bn coefficients:

The above operation is again of the N3 tot-order for all the expansion coefficients
bn , and the matrix elements f dry (r(r)φń(r)φm '(r) are exactly of the same type
as those needed in Eq. (3.22), i.e. they can all be reduced to terms involving Meee
and Meoo. Therefore, by first expanding terms such as p0(r), p'(r), Δ0(r), Δ'(r)
in the appropriate basis given their parity, the calculation for the density matrix
elements of the type Dnn ' has been reduced from the N4to t-order to the 2N3 tot-order
(one N3tot-order from calculating the expansion coefficients bn , as in Eq. (3.25), and
another N t-order from computing the matrix elements for the expanded form,
as in Eq. (3.22)).

We want to emphasize that this technique, of reducing a calculation involving
Inmn'm' to one involving only Imnm ', is also applicable when the ground state
Ψ0 (r) (and thus 0( r), p'(r), Δ0(r), Δ'(r)) have different symmetries, as one might
expect to occur in the case of vortex states. It even applies when there is no
explicit symmetry. In such a case, one may use the complete set of basis states
which includes all 8 different parity sectors.

3.5. Construction of the angular momentum states

The preceding subsections have outlined an approach which is efficient for
finding the low energy excitations for a trapped Bose gas [25]. Although we have
repartitioned the basis states into parity sectors for three coordinates (x, y , z),
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no other special symmetries of a given trap have been used. In practice, most of
the current magnetic traps used in BEC experiments have cylindrical symmetry.
For such traps the angular momentum projection along the symmetric x-axis,
L2 , is conserved. For Lz ^ 0 there is a double degeneracy according to the sign
of L. Using the harmonic oscillator eigenfunctions as our expansion basis, the
reconstruction of the L. z eigenstates is a straightforward task [34], which will be
discussed below.

For a cylindrical trap with ω x = ωy = ωr (radial trapping frequency), we
can characterize the quasiparticle states according to (1) their energy ώn; (2) their
angular momentum projection Lz ; and, (3) an integer indexing the sequence within
a degenerate ώn and Lz manifold. We notice that the states (Uki, Vki) for i =
1, ... , nd correspond to the same energy ωk and so are any linear combinations of
them (since the Bogoliubov-de Gennes equations, Eqs. (2.8) and (2.20), are linear).
Thus, the eigenstates of L z into the nd-degenerate manifold may be constructed as
a linear combination, i.e. UkLz= Σ ciUki (and similarly for Vki). The appropriate
coefficients ci are given by the following system of equations:

The summation on the rhs is due to the non-orthogonality of the Uki functions.
This is a generalized matrix eigenvalue problem. The matrix elements involved
may be easily evaluated using a product of harmonic oscillator basis denoted by

| nx ) ny)|nz >. Let us assume that

Using the creation (annihilation) operators át , áy , át, (üx , áy , áz ) for the harmonic
oscillator basis states | nx ), n), |nz) and the relations,
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Similar techniques may be used in the case of a spherically symmetric har-
m_ monictrap_to find the quasiparticle states for the angular momentum operators
L2 = L2x + L2y + L2z.In this case the eigenstates of L2andL,zmust be of a spherical
harmonics type, ΥLL..

4. Results and discussions

We incorporated the above ideas into a numerical program and use it in the
study of interacting trapped Bose gases within the standard mean-field BH approx-
imation. In our ongoing efforts, we have solved the BH equations for the excitations
of condensates in various types of traps. Some of the results are discussed here.

We note that our quasiparticles represent elementary excitations of the quantum
noise δΨ(r) (δΨt(r)), while in the current experimental investigations the quasi-
particle excitations are created by using microwave pulses or trapping potential
perturbations [7].

For the solution of the NLSE (2.5), we typically use up to 10,000 states with
the highest energy states corresponding to Emax > 50ħ for the JILA TOP trap
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and Ε. > 200Ι ω for the MIT cloverleaf trap. Here we only present results for
the TOP trap with ωx = ωy = ωz/'. For the zero-temperature calculations,
the same number of basis states were used for Eq. (2.8), therefore, higher excita-
tions, closer to Emax , are not well represented. For finite temperature calculations
within the Popov approximation, we have used fewer basis states for Eq. (2.20),
in order to make the calculation possible on a personal workstation. We limited
the calculations to a range of parameter where the convergence of the solution is
ensured.

The typical dependence of the excitation spectrum on the number of con-
densed atoms is shown in Fig. 1 calculated in the 8 separate parity sectors. The
characterization of the angular momentum operator L z is a straightforward task
usually involving only two energy degenerate states. All Lz = ±(2m+1) states (i.e.
odd angular momentum projection states) are obtained simply from the doubly
degenerate states of the (odd x, even y) and (odd y , even x) sectors (of the same, z
parity). All states in the middle panel are doubly degenerated. This symmetry be-
tween the x and y basis sets requires us to solve only Eqs. (2.8) and (2.20) within
the (odd x, even y) sector (for both odd and even z parity). The even angular
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momentum states, L.z = ±(2m), are formed by the linear combinations of the so
lutions for (even x, even y) and (odd x, odd y) sectors (i.e. states in the flrst and
third panel). In particular, all L = 0 states are within the (even x, even y) sector.
For every state in the (odd x, odd y) sector there is always an energy degenerate
counterpart in the (even x, even y) sector. Together they form a nonzero even ±Lz

pair of states. In this plot, we have connected the calculated points assuming no
crossing between states with the same symmetries.

In the first panel of this Fig. 1, there are two curves with constant excitation
frequencies. The lowest curve, for ί = 0, corresponds to the Goldstone mode
associated with the U(1) symmetry breaking. The higher one, at ώ = √8  is
the small amplitude center of mass motion of the rigid cloud in the z-direction.
Similarly, in the middle panel, the doubly degenerate state for = 1 corresponds
to the small amplitude center of mass oscillation in the x and y axes.

Three of the independent shape oscillations have been measured experimen-
tally [7, 8] and discussed extensively using various analytic approaches [15, 17-20].
In Fig. 2 we compare our calculations with the results of Ref. [17]. In Fig. 3 we
show the dependence of the quasiparticle eigenfrequencies on Ń for Lz = 0, ±1, ±2,
and ±3. The open circles denote the three shape oscillation modes from Ref. [17].
The dot lines in the asymptotic limit, N = 10 5 ¸ 10 6 , are obtained using the
Stringari results [15]. The asterisks, triangles, squares, and X's denote the n =
0, 1, 2, 3 modes, respectively, obtained in the asymptotic limit of Refs. [19, 20].
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Our numerical evaluation agrees well in the asymptotic limit with the analytical
results of [15, 17-20].

In Figs. 1, 2, and 3, all crossings between curves of different z parity are
allowed. For curves with the same z parity, we have connected the calculated
points assuming that there are no crossings between them. This may not be always
true. Let consider a possible crossing for the lower energy curves with L.z = 0 from
Fig. 3. Any of these curves represents one of the shape oscillations Ref. [17] and,
therefore, they should maintain their symmetry through any value of N. In Fig. 4,
for values of N = 250 and N = 1000 on either side of the possible crossing, we
show projections of the mode function U(r) onto the (even x, even y , even z)
basis for each of the two curves involved. This may suggest that a crossing point
exists in this range of value of N. To firmly determine if this crossing indeed exists
one has to perform detailed numerical computations at exactly the crossing points
(minimum distance points between the two energy curves for avoided crossings).
We have performed such a study of the crossing shown in Fig. 4. Figure 5 presents
the shape of | U(z, y = 0, z) | for the same values of N. These figures indicate
the existence of a crossing between these two curves. In our initial studies [25]
this crossing was identified as an avoided crossing based on the fact that these
two quasiparticle energy levels belong to the same symmetry manifold. Recent
semiclassical studies of quasiparticle motion in trapped condensates have revealed
rich chaotic dynamics underlining these complicated level crossings and avoided
crossings [35].
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In Fig. 6 various zero temperature results are plotted as a function of N. Fig-
ure 6a presents the chemical potential, µ, the dephasing parameter, α, as well as the
dephasing rate, '

γ
dp = α/ N0 as a function of N. In the TFA both μ and α scale as

N 2 / 5 , while γdp scales as N - 1 / 10 . It is interesting to note that before γdp reaches its
asymptotic scaling behavior it passes through a maximum: Figure 6b presents the
total ground state energy as a function of N. Figure 6c presents the number of non-
condensed particles in the zero temperature limit as a function of N. The conden-
sate depletion is a good measure of the effect of interparticle interaction. As a per-
centage, only a very small fraction of the atoms are noncondensed. In the asymp-
totic limit N'(T = 0) scales approximately as Ν 6 / 5 , as indicated with the dashed
line. This is consistent with the empirical results of Ref. [31] as well as the semi-
classical results of Ref. [36]. The projection, zk, of the condensate wave function
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onto the quasiparticle mode functions (Uk , Vk) (see Eq. (2.16)), is plotted in Fig. 7
only for k corresponding to the Lz = 0 quasiparticles since the ground state con-
densate wave function ψ0(r) has the Lz = 0 symmetry.

In Figs. 8, 9, and 10, we plot our preliminary results for finite tempera-
ture calculations within the Popov approximation for the JILA TOP trap with
N = 1000 atoms. The trap and atomic parameters are the same as in the previous
zero temperature results. Figure 8is arranged in a similar fashion as Fig. 1 ex-
cept now we plot the dependence of the excitation spectra on the temperature T,
which is determined from the self-consistent Popov calculation by specifying both
N0 and N. We denote with Τc the ideal Bose gas condensation temperature for the
same trap parameters and number of atoms (in our case it is equal to 13.3ħω/k).
Even with the limited basis set of functions used, the highest temperature point
computed is very cloSe to Τ. For N0 = 0.125N the temperature is given approxi-
mately by T/Tc α (1 - 0.125) 1 / 3 0.9565. The open circles and squares are used
to highlight the shape oscillations recently studied experimentally [7, 8] but they
do not represent experimental data points. We can see that when Τ is close to Τ ,
the overall trends of the temperature dependence of the two excitation frequencies
are similar to those measured in Ref. [8], although N = 1000 atoms is signiflcantly
smaller than the total number of atoms involved in the experiment. However, close



232 	 L. You et al.

to the transition temperature, our calculations do not produce any rapid changes
of the excitation frequencies. This is in disagreement with the variations observed
in recent experiments and is the subject of our continued study.

Figure 9 presents: (a) the temperature dependence of the chemical poten-
tial, μ, and the dephasing parameter, α, and (b) the ground state energy of the
condensate.

In Fig. 10a the solid line with fllled circles shows the fraction of noncondensed
atoms, N'/N = (N-N0 )/N, plotted against the computed temperature. The filled
circles denote the computed data points. The dashed line represents the fraction
as given by our numerical solution using a basis of states satisfying Emax < 50 ω.
The dotted line represents the difference between the two curves. We are confident
that the size of the basis adopted here is suitable to describe the present system,
of course, increasing the total number of atoms, the interaction strength, or the
temperature would require a larger basis set. Figure 10b presents the computed
temperature of the condensed gas plotted against the fraction of condensate atoms.



Low Energy Excitation Spectra ... 233

We note that the computed temperature is always lower than that of the ideal Bose
gas prediction, N0 /N = 1 — (T/Τc )3 . This is consistent with the observation of
lowering the condensation temperature T^ from Ref. [39].

5. Conclusions

We conclude the following:
(1) At zero temperature, results of the quasiparticle excitation spectra from

the mean field Bogoliubov approximation calculations agree well with the ex-
perimental data. Many approximate analytical approaches [15, 17-20] also pro-
duce excellent predictions for various quasiparticle excitation frequencies in the

.

Thomas—Fermi limit.
(2) For finite temperatures, we have presented a self-consistent mean field

Bogoliubov-Hartree calculation within the Popov approximation. Our preliminary
calculations indicate that more detailed studies are needed in order to explain the
recently measured finite temperature excitation results [8].
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