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Consider an initial state lying on a primary resonance island. The state
may tunnel into the chaotic sea surrounding it and further escape to infinity
via chaotic diffusion. Properties of transport in such a situation are studied
on an exemplary system — the hydrogen atom driven by microwaves. We
show that the combination of tunneling followed by chaotic diffusion leads to
peculiar large scale fluctuations of the AC Stark shift and ionization rates.
An appropriate random matrix model describes accurately these statistical
properties.
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1. Introduction

Typical textbook cases of tunneling (in one-dimensional systems) consider
quantum transport in situations when the classical transport between regions of
space separated by e.g. potential barriers is forbidden. In multidimensional sys-
tems, the situation becomes complicated. Classically, in two-dimensions, Kolmogo-
rov-Arnold-Moser (KAM) [1] tori provide strictly impenetrable borders for trans-
port separating the phase space into distinct regions of classical motíon†. When
the classical phase space is of the mixed type — partially chaotic and partially

*Permanent address.
In higher-dimensional systems, classical Arnold diffusion provides another mechanism of

classical transport, a process which is, however, typically very slow [1].
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regular — composed of a chaotic sea and regular islands embedded in it, the clas-
sical transport between the islands and the sea is forbidden. Semiclassically, one
can associate wave functions with distinct regions of phase space [2], the residual
coupling between them will be due to quantum tunneling process. One can then
consider the tunneling between two islands mediated by the classical transport in
the chaotic sea surrounding them.

Interestingly, this chaos assisted tunneling mechanism possesses unique fea-
tures typically absent in the standard "barrier" tunneling of quantum mechanics,
such as a great sensitivity to the variation of external parameters manifesting
itself in fluctuations of observable quantities. Previous works considered mainly
model one-dimensional time dependent systems [3-5] or model two-dimensional
autonomous systems [6-9]. A similar problem in the scattering case has also been
discussed on a kicked model system [10].

We shall consider here a different situation, motivated by the physics of atoms
ionized by external strong electromagnetic radiation. We discuss the single tunnel-
ing process out of the stable island followed by the chaotic diffusion process which
eventually leads to ionization. The example studied, a hydrogen atom placed in the
microwave field of circular polarization, is realistic and experimentally accessible.

Firstly we review the properties of states localized on stable primary islands
— the so-called nonspreading wave packets. Later we concentrate on the prop-
erties of the decay of wave packet states showing, by comparison to a statistical
model, that their mechanism of ionization is indeed due to chaos assisted tunneling
process. The reader interested in details should consult the original papers [11-15].

2. Nonspreading wave packets in periodically driven systems

Consider a one-dimensional system described by the Hamiltonian Η 0 (Ι)
where I is the principal action (we denote by φ the angle conjugate to I). The
frequency of the classical motion ω^j(I) = ∂Η0 /∂Ι is a function of the action
and, therefore of the energy E. Now let us perturb the system by a time-periodic
potential V = v(Ι, φ) cos(ωt). If, for a given E, ωcl is vastly different from the
external frequency ω, the perturbation is nonresonant and affects only weakly the
motion. The situation is drastically different in the case of a resonance, i.e. when
nωcl = mω with n, m being low integers [1]. A resonant exchange of energy can
take place, the system becomes strongly perturbed by V. Consider the simplest
case of 1 : 1 resonance, i.e. when ω clω.The Hamiltonian of the perturbed
system can be (locally in energy) represented by the Hamiltonian of a pendulum
with a pair of stable and unstable fixed points (periodic orbits of period 2π/ω) [1].

While in the unperturbed system two initially close points (Ι 1 , φ1) and
(I2, φ2) in the phase space tend to separate in angle from one another (since
ω I(I1) ψ ωcl(I2)) it may no longer be so for the perturbed motion. Inside the
island surrounding the stable fixed point, the classical motion is restricted to tori
surrounding the fixed point, the classical motion becomes locked to the external
driving frequency.

Consider now a wave packet constructed for the unperturbed system. It will
disperse following the fate of classical trajectories. By contrast, a wave packet
placed inside the resonance island of the perturbed system will not disperse re-
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maining in the vicinity of the fixed point at every period of the external driving
(following the corresponding periodic trajectory at all times).

Quantum mechanics of periodically perturbed systems tells us, by Floquet
theorem [16], that the eigenstates of the system, the so-called quasi-energy states,
are time periodic. If the classical island is large enough to support quantum states,
some of the Floquet states must be localized inside the island. As exact solutions
of the Schrödinger equation, they regain their shape every period and remain
localized in the same region. Thus a quantum representation of the non-dispersive
wave packet is simply a well chosen Floquet eigenstate.

First examples of Floquet states with such interesting properties were studied
for model systems [17] and termed flotons. In an independent work, the non-disper-
sive wave packets have been semiclassically constructed for the hydrogen atom
driven by a circularly polarized microwaves (CPM) [18]. Similarly such objects
have been found for linearly polarized microwaves (LPM) [19] and identified with
single Floquet eigenstates. For CPM this identification has been carried out in [11].
Let us mention also that the pendulum analysis in LPM case was also done [20].
Such a pendulum approach gives an excellent semiclassical prediction for the
quasienergies of wave packet Floquet states.

For a hydrogen atom in CPM the situation is even simpler if not generic. In
the frame rotating with the CPM field, the Hamiltonian becomes time independent

with 4 the angular momentum operator. Atomic units are used throughout the
paper.

At the center of the principal resonance island between the Kepler and the
microwave frequency, a periodic orbit exists in the lab frame whose period exactly
matches the period of the microwave. It corresponds to a fixed point of the motion
in the rotating frame. It is possible to find the region of microwave fields when the
point is stable [18], the semiclassical quantization based on a harmonic approx-
imation around the fixed point yields accurate prediction for their energies [11].
Moreover, the wave packet is a coherent superposition of circular Rydberg states
with a Gaussian-like distribution of the corresponding overlaps centered around
the principal quantum number n0 = ‚1/3 Note that n0 is not necessarily an
integer.

Due to the scaling properties of the Coulomb problem, the classical dy-
namics depends only on the scaled microwave amplitude F0 = Fn40 = Fω -4/ 3

which is the ratio of the microwave amplitude to the Coulomb field of the nu-
cleus on the unperturbed n0 circular orbit. The fixed point remains stable up to
F0 0.11, i.e. fields which are strong enough to ioniZe a typical atomic state in few
microwave periods [21]. In fact a significant ionization of a typical initial atomic
state occurs already at F0 0.03 during few tens of microwave periods. Yet the
lifetime against ionization of the wave packet states may well exceed million mi-
crowave periods! [12]. This is precise because these Floquet states are strongly
localized on the stable island and classically forbidden to ionize. The spontaneous
emission lifetime for the wave packets is exceedingly long [22], orders of magnitude
longer than their lifetime against the ionization. Thus the ionization process is a
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dominant mechanism of the decay of wave packet states, the unusual properties
of this decay are reviewed in the next section.

3. Chaos assisted tunneling as a mechanism for ionization
Using the expansion of Eq. (1) in the Sturmian basis combined with complex

rotation technique and Lanczos diagonalization routine we are able to calculate
exactly the quasienergy spectrum of the problem (for details and further references
see [12, 15]). The resulting Hamiltonian matrix is complex symmetric and yields
eigenvalues of the form εi = Ei — iΓi/2. For a bound state the imaginary part
vanishes and Ε is simply the energy of the state. For resonances, Ε yields the
energy position of the resonance while the corresponding Γi iS the resonance width.
Excellent semiclassical prediction for the real part of the energy [11] allows us to
extract only few eigenvalues (from matrices of a typical rank of 50000) around
the semiclassical value, the wave packet state is then identified by its large dipole
moment ( no) in the rotating frame.

The typical deviations of the exact resonance position from the semiclassical
prediction and the ionization rates obtained are presented in Fig. 1. Observe the
large scale fluctuations of both quantities over several orders of magnitude for
small changes of the frequency (typically of the order of 1 part in 1000). These
fluctuations — although perfectly deterministic — look completely random and
are strongly reminiscent of the universal conductance fluctuations observed in
mesoscopic systems [23]. Indeed, the ionization width measures the rate at which
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an electron initially localiZed close to the stable resonant trajectory ionizes, i.e.
escapes to infinity. In other words, the ionization width directly measures the con-
ductance of the atomic system from the initial point to infinity. In a quantum
language, the ionization width is due to the coupling (via tunnel effect) between
the localized wave packet and states lying in the chaotic sea surrounding it. While
the energy of the wave packet is a smooth function of the parameters F and ω,
the energies of the chaotic states display a complicated behavior characterized by
level repulsion and strong avoided crossings. By chance, it may happen that — for
specific values of the parameters — there is a quasi-degeneracy between the wave
packet eigenstate and a chaotic state. There, the two states are more efficiently
coupled by tunneling and the ionization width of the wave packet eigenstate in-
creases. This is the very origin of the observed fluctuations. Simultaneously, the
repulsion between the two states should slightly modify the energy (real part of
the complex eigenvalue) of the wave packet state leading to fluctuations of the AC
Stark shift.

To describe the fluctuations quantitatively we calculate the statistical distri-
butions of the ionization widths P(w) and of the energy shifts P(s) and compare
them with a simple statistical model [15]. The idea is to consider the wave packet
eigenstate as coupled randomly with a set of chaotic states (described by random
matrix theory [24]) themselves randomly coupled to the atomic continuum. For the
detailed description of the model we refer the reader to [15]. In short the random
realization of the Hamiltonian takes the form

where V is a random vector (whose components are Gaussian distributed random
numbers) coupling a regular (wave packet) state with energy  Ε0 to N chaotic
states (eigenstates of H0). The strength of the coupling is determined by σ. To
model Η0 we use the standard assumption that H0 pertains to the Gaussian or-
thogonal ensemble and generate Η0 accordingly [24]. The decay of chaotic states
is due to a non-Hermitian part —iγWWT with strength determined by γ. W itself
is a random vector for a single channel decay [25]. The variance of the Gaussian
distribution used to generate H0 and the dimension of the matrix N determine
the mean level spacing ∆ of the model. The two physically relevant, independent
parameters are γ/∆ and σ/Δ. In the perturbative regime (γ/∆, σ/Δ K 1) one
may obtain analytically [15] the predictions for the distribution of shifts (of the
regular state energy from the unperturbed value Ε0) P(s) and that for the widths
P(w). Alternatively, as done here, one may find both distributions numerically by
averaging over several realizations of random Hamiltonian Eq. (2). A comparison
of the obtained distributions with data obtained for the real system — the hydro-
gen atom in CPM — allows us to extract the values of the physical parameters:
σ/Δ — the coupling between the regular and chaotic states (the tunneling rate)
and γ/∆ — the strength of the decay of chaotic states (the chaotic ionization
rate). An example of such a fit is presented in Fig. 2. Typically around 1000 data
points are taken around some mean value of n0 and F0 .
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Taking several stretches of data corresponding to different mean n0 and the
same F0 one can test the ħ dependence of the tunneling rate and the ionization
rate. The effective ħ in our problem is inversely proportional to n 0 . It turns out
that γ/∆, the chaotic ionization rate, is only weakly dependent on n 0 . This is
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understandable — the ionization of chaotic states originates from the classical
diffusion. However, as depicted in Fig. 3, σ/∆, i.e., the tunneling rate decays
exponentially with n0 to a good accuracy. Writing the tunneling rate as σ/∆ a
exp(—S/ħ) α exp(-Sn0) we can extract by a straight line fit, the tunneling action
value S = 0.06 ± 0.01. This exponential behavior is a strong evidence of the
tunneling mechanism of the ionization.

4. Conclusions

We have provided a numerical evidence for a novel mechanism of ionization
— chaos assisted tunneling — by studying a realistic and experimentally accessible
example — a hydrogen atom driven by circularly polarized microwaves. It turns
out that both the widths and AC Stark shifts of nonspreading wave packet states
exhibit large scale fluctuations. We analyse these fluctuations quantitatively using
an appropriately defined random matrix model. The model allows us to separate
the ionization into two stages: tunneling from a stable island into the surrounding
chaotic sea (which shows the typical exponential dependence on ħ) and the chaotic
diffusion process (weakly dependent on ħ) which leads to further excitation and
finally ionization.
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