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MEASUREMENT OF WAVE FIELDS.
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Wave fields play a central role in both classical and quantum mechanics.
Generally applicable methods for the characterization of (scalar) fields are
outlined, and illustrated by experiment and simulation.
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1. Introduction

Wave flelds are the fundamental entities in both classical electrodynamics
and quantum mechanics. The similarity of their governing dynamical equations
suggests that similar strategies may be used to measure both classical and quantum
flelds. Indeed, numerous experiments in the recent past have demonstrated just
this. But it is not this similarity alone that makes it important to consider their
measurement within a single context, it is the very notion of manipulation of
quantum systems (the idea of quantum state preparation or control) that demands
it. Consider, for example the generation of á single photon 'on demand", using
the prescription, say, of Eberly and Law's "photon pistol" [1]. What does this
mean, precisely? Nothing more than the specification of the quantum state of the
field (a Fock state with eigenvalue unity) and a classical state of the field (the
temporal mode in which the excitation is generated). Both pieces of information
are necessary to appropriately specify what one means by the time of production
of a photon. This problem resurfaces in all quantum measurement problems
one needs to know both the basis in which one is making the measurement and
the degree of freedom (or the mode) for which the measurement is defined.

To the extent that quantum state measurement is the same as state prepa-
ration, it might be argued that there is no need to consider state measurement
procedures separately. Of course, in practice most measurement schemes end up
being of the demolition variety — one infers from the detected signal what the
state must have been at the detector before a signal was registered. This is quite a
different situation than the ideal envisioned by von Neumann. But this aside, the
situation may perhaps be likened to one of quality control, if one may adopt the
industrial, metaphor used by the state engineers. That is, the consumer needs to
determine whether she has been sold the quantum system that meets her needs,
in the state that she ordered. Thus she needs both a classical and a quantum field
measurement apparatus. Of course in practice one must order (and measure) an
ensemble of identically prepared states, and then use the apparatus to determine
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not only the quantum state and mode, but also the purity of the ensemble. Since
presumably one would wish also to do an experiment with the purchased state,
then the acquisition of two identical ensembles would, of course, be necessary,
along with some "fair sampling" assumption consistent with good quality control.

2. General strategies for wave field measurement

2.1. Quantum and classical measurements

The quantities to be determined in the first instance, are, in the case of
classical fields, the scalar optical field E(x, t) (as a function of one of these variables
only, at the moment) and in the case of quantum matter fields, the wave function
Ψ(x) (the dynamical dependence of this function being understood). In the case
of the radiation field, the argument of the wave function is considered to be a field
quadrature. In fact the measurements to be described can all be used to determine
the purity of the state or the coherence of the field, in which case one seeks the
density matrix (in position or momentum basis) or the two-point or two-time
correlation function. We consider only fields or particles that are well localized, so
that it is rather simple to define an ensemble for which the correlations may be
evaluated. Thus the two-point correlation function for the electric field (taken to
be time-stationary) can be defined as

where the average is taken over a set of realizations of the experiment, repeated
many times. This definition is analogous to the definition of the density matrix,
which involves an average over all pure states that the system may potentially
occupy. If one does not know a priori that the field is coherent or the state is
pure, it is necessary to measure p(x, x') or Γ(x, x') and then to perform a test for
coherence or purity. The test consists of assessing whether the function factorizes.
That is, construct the parameter μ, defined as

Then, if μ = 1 the field is coherent, or the state is pure.
The similarity of the measurement problem in the case of (one-particle) quan-

tum fields and the optical field arises not only because they obey similar dynam-
ical equations, and can be represented by continuous complex functions of real
variables, but also because they can be observed using only "square-law" type
detectors*. Α general measurement strategy for both can thus be worked out in
the context of a strategy for either. We therefore consider the case of idealized
linear quantum measurements. The analogous formulation for classical wave fields
is related to the theory of optimal signal detection. There are two manipulations
that one may perform on a quantum system; a unitary evolution U,9 where θ de-
notes a parameter, and a measurement ΠΑ, where A denotes the outcome of the
measurement. This is defined by

*For THz pulses it is possible to measure the dynamical electric field directly, so that this
analogy does not hold. In the optical regime, however, the situation is quite different.
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where f 2 (Α|Α') is the conditional probability that the measurement will yield the
outcome Α if the input was definitely in state |A').

According to Braginsky and Khalili [2] sequential measurements of two ób-
servables A and A' are defined as linear if their commutator is a complex number.
In the case of a sequence of unitary transformations (labeled by the set of param-
eters {θ }) and measurements of the set of observables {Αi }, the probability that
the result will be a set of real numbers {Αi is

For a single, ontinuous degree of freedom, the probability may be written as an
overlap integral of the density matrix (taken here in the position representation)
as

where the propensity function F(x, x'; {Αi} , {83 }) depends on the meter and trans-
formation parameters.

An entirely analogous expression may be derived for the photodetector signal
at the output of a sequence of linear filters, at the input of which is an electric
field specified by its correlation function (Γ(x, x') for the case of time-stationary
fields and filters, or Γ(t, t') for space-shift invariant fields and filters). In this case
the analog of a meter (used for making a measurement) is an amplitude filter, and
that of a unitary evolution is a phase-only filter. Then, denoting the filter transfer
function parameters by Χi and ς; leads to

We may ask what are the minimal conditions for reconstructing this cor-
relation function or density matrix? It is clear that any measurement apparatus
must be capable of completely exploring the two-dimensional space of these func-
tions even if one only wishes to measure a one-dimensional electric field or wave
function. The simplest methods, therefore, require two linear operations. These
take two forms, either in series, or in parallel. If one considers both meters and
unitary-transformers two-port devices (the field enters at one port and exits in
a modified form at the other) then the in-series arrangements consist only of
two-ports. Any in-parallel arrangement must, though, include a way to divide the
input field into parts, and must therefore contain at least one ancillary four-port
device, such as a beam-splitter. The unused input port of such devices plays an im-
portant role in many quantum measurement apparati, but none at all in classical
measurements.

In-series measurements consist of a meter or a unitary transformation, fol-
lowed by a meter, as shown in Fig. la. In the case of two meters in sequence, it
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is straightforward to show that the meters must register complementary observ-
ables if the measured probability density is to be dependent on the phase of the
density matrix. For the case of a unitary transformation and a meter, it is clear
from Eq. (4) by cyclic permutation under the trace that the unitary operation
must precede the meter, otherwise the probability density will be independent of
the parameter characterizing the transformation.

The inversion method for these two schemes are quite different. The two-di-
mensional function returned by the two-meter method is a particular phase-space
representation of the input state. If the first filter in the arrangement has a Gaus-
sian conditional probability, and the second is precise (i.é. its conditional probabil-
ity is a delta function) then the measured function is the Q-function, or its analog
for a classical field. The inversion to the density matrix or correlation function is
then via deconvolution. This class of measurement is termed spectrographic, since
it involves characterizing the field by a spectrogram or a sonogram.

The method involving a unitary transform and a meter, shown in Fig. 1b,
returns a set of one-dimensional positive functions (position or momentum distri-
butions, for example) that depend also on the setting of the parameter(s) associ-
ated with the transformation. It is possible to invert this set of functions for any
type of transformation [3], but it is particularly straightforward for transforma-
tions that are equivalent to dynamical evolution in a harmonic potential. In this
case the transformation is characterized by a single parameter θ that ranges from
—π to +π. For a sufficiently large number of, say, position distributions, each with
a different value of θ over this range, the discrete inverse Radon transform that
is well known from computer-assisted tomography may be used to reconstruct the
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Wigner distribution of the field [4]. From this function it is straightforward to
obtain the density matrix via a Fourier transform. This class of measurement is
therefore labeled tomographic.

The second class of measurement involves two filters placed in parallel chan-
nels at the output ports of a four-port. Or two filters simultaneously in the two
input channels of a second four port, at one of whose output ports is a meter.
Schematic illustrations of these are shown in Figs. lc and d. Both of these classes
of measurement are essentially interferometric, and determine phase by compar-
ison with a second field. The difference is that the first type of apparati use a
known reference field for comparison, whereas the second type are self-referencing.

For classical fields, it is well known that the real part of the correlation func-
tion is simply related to the fringe pattern observed in two-beam interferograms.
Even so, interferometry is not commonly used in measurements for coherence,
and it has not yet been applied at all to the measurement of the state of quan-
tum matter waves. On the other hand, the optical balanced homodyne detector
may be thought of as an interferometer, so that the technique of homodyne tomo-
graphy for characterizing quantum optical fields can be considered as either an
in-series (if one takes the detector to measure the quadrature amplitudes directly)
or in-parallel devices.

An important point in interferometric measurements is that there is always
a second input field, whether or not it is explicitly manipulated by the experi-
menter. For example, in test-plus-reference type interferometers, Fig. lc, the two
input ports of the four-port are occupied by the test and reference fields. But in
the self-referencing type (Fig. d) the second input port sees only the vacuum
or no-particle state. The presence of this field may or may not compromise the
precision of the measurement, but its presence must always be taken into account.

2.2. Phase-space representations of in-series measurements

Spectrographic and tomographic measurements can be clearly distinguished
by their phase-space representations. Such spaces can be defined for both quantum
and classical fields, and are based on the notion of conjugate variables. For exam-
ple, the quantum oscillator phase-space variables are position and momentum,
which are complementary in the sense that the commutator of the corresponding
observables is a complex number, and the variance of the two observables taken in
any state of the oscillator is greater than or equal to ħ. The phase-space of a clas-
sical field can be thought of as also involving two classically conjugate variables,
corresponding to two representations of the field. In the case of the optical field,
these might be position and wave vector or time and frequency. In both cases the
products of the variances of these quantities for any field is greater than or equal
to 2π according to Fourier's theorem — one may think of such Fourier pairs as
"classically incompatible observables".

Thus for any complex field that is a function of a real variable, ζ(χ), it is
possible to define a Wigner representation of the correlation function of the field,
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For example, a temporally localized optical field may be represented by a.Wigner
function of time and frequency in the chronocyclic phase space. This representation
has all the analytic properties associated with the more familiar quantum Wigner
function, including the property that it may be negative. Negativity in this context
arises from the interference of classical waves rather than quantum waves, but
nonetheless provides information about the coherence of the underlying field [5].

The output of spectrographic measurement apparati is a two-dimensional
function of ξ and n (say, position and momentum, or time and frequency) that is
related to the input field according to

The function Η(ξ ' , n') is a phase-space "window" function through which one may
gaze upon the input field. It is related to the propensity function defined by Eq. (5)
by a transformation similar to Eq. (7). Since we assumed linear measurements (or
filtering, in the case of classical fields) this function is a property of the apparatus
alone. The window function occupies a minimum phase space area of ħ in the
quantum case, or 2π in the classical case, but only attains this minimum when the
first measurement is imprecise and the second precise. It is easy to see why this
should be so from a simple example, say the measurement of a short optical pulse.
In the frequency-resolved optical gating (FROG) spectrographic method the first
meter is a spectrometer or frequency meter, and the second a fast shutter, or time
gate. It is obvious that a precise initial measurement of frequency will discard all
information about the arrival time of the field, and thus render the shutter useless.
Thus intuitively one might expect that the optimum situation is arrived at if the
spectral filter bandwidth is comparable to the pulse spectral width and the shutter
opening is very rapid. This turns out to be the case.

Α cartoon of a spectrographic window function is shown in Fig. 2a. It is
a well-localized entity in both transform variables, and moves about the phase
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space as the output variables and n change, corresponding, in our example, to
varying the time of opening of the shutter, and the tuning of the center of the
spectrometer passband. These devices act as meters for the classical fleld in the
sense that if one detects radiation having passed through the apparatus with a
particular setting of these parameters, then one infers that the radiation contained
that particular frequency during that particular time slot. The configuration space
version of this situation has been discussed in connection with the measurement
of spatially localized quantum wave functions by Raymer [7].

The output of tomographic measurement apparati are a set of one-dimensio-
nal functions of that are parametrized by the transformation variable θ. In the
case of harmonic tomography, these are related to the input field via

The function T (ξ', n'; , 8) is also a phase-space window function, but has quite a
different form than the spectrographic window function, as is shown in Fig. 2b. It

rotates in the phase space asθvaries, and moves horizontally as ξ varies. Again
it is possible to show that the function occupies a minimum area of phase space
for precise measurements of , in which case the window function becomes a delta
function, and θ is the angle between T (ξ', n'; ξ θ) = δ ξ  sin θ - n' cos θ - ξ)and
the ξ axis. Then the measured probability distribution, are projections of the
Wigner function representing the field onto a set of rotated ξ = n axes. The princi-
ples of tomography for quantum systems based on these ideas has been reviewed
extensively by several authors [8, 9].

2.3. Coherence-space representations of in-parallel measurements

Interferometric measurements are more easily visualized in the space in which
the correlation function resides. We shall label this the "coherence space" of the
field. This might be a two-dimensional configuration space, in the case of F(x, x')
for example, or the two-dimensional momentum or wave vector space that is oc-
cupied by its conjugate function Γ '(k, k'). These are two representations of the
same underlying entity, of course, analogous to the position and momentum repre-
sentations of the density matrix of a quantum particle. The relationship between
these two representations and the phase-space densities discussed in Sec. 2.2 fol-
lows straightforwardly from Eq. (7). The Wigner phase-space density is obtained
by a Fourier transform of the density matrix or correlation function in the ξ rep-
resentation, with respect to the difference of its two arguments. A second Fourier
transform, this time with respect to the average of its two arguments, yields the
n-space representation of the density matrix or correlation function. This may also
be obtained by a second route in which the order of the Fourier transforms are
inverted; the intermediate function in this case is the characteristic function of the
Wigner distribution, which is known as the ambiguity function for classical fields.

There are two versions of the test-plus-reference interferometric measurement
for quantum fields. In the first, a coherent-state field enters the reference port, after
a phase shift characterized by the phase angle θ. A precise ξ measurement is made
at the output ports. This leads to the method of optical homodyne tomography.



166 I.A. Walmsley, L. Waxer, C. laconis

In the second method, a vacuum enters the second input port, and precise ξ
and n measurements are made simultaneously at the two output ports. Since these
are incompatible observables, this arrangement corresponds to a spectrographic
type of measurement, as discussed by Stenholm [10].

Self-referencing methods in which one of the input ports sees a vacuum are
different. These correspond to looking at the region of coherence space occupied
by the field using a point-like window representing a precise measurement of the
n or ξ observable, a unitary transformation, parametrized by a displacement by
amount δξ of one part of the field with respect to the other, and a phase-shift θ.
Because only a single observable is measured, there is no minimum area of phase
space that the window function must occupy. The correlation function or density
matrix can be constructed directly by a series of measurements of ξ for various
values of δξ and two values of θ separated by π/2.

Given the direct access to the density matrix or correlation function that this
class of measurement affords, one may question why it is not used more often when
flelds are to be characterized. The reason is that the unitary transformation and
meter must be functions of the same observable, and it is rare that one is able to
find both simple displacements and precise measurements in the same variable. For
example, in the case of an ultrashort optical pulse, it is simple to displace the pulse
in time — a delay line will do this — but impossible to measure the shape of the
resulting temporal interference pattern, which contains beat frequencies as large as
the optical frequency. On the other hand, it is easy to measure frequency precisely,
but difficult to make a wavelength displacement of any significant magnitude.

3. Spectrography and tomography

3.1. Emission tomography for quantum state reconstruction in matter
The principles of tomography may be applied to the measurement of any

material system in which the electronic and vibrational degrees of freedom are
coupled. For systems in which the major mechanism for the damping of the elec-
tronic degree of freedom is radiation, tomographic reconstruction of the vibrational
mode is accomplished from measurement of the spontaneous emission. An exam-
ple of this is the reconstruction of the quantum state of the vibrational mode of
a diatom in an excited electronic state from a measurement of its time-dependent
fluorescence spectrum.

A molecule may be excited into nonclassical vibrational states, notably quad-
rature squeezed states [11] or classically distinguishable coherent superposition
states [12, 13], by the application of a short optical pulse resonant with the elec-
tronic transition. Because the electronic and nuclear vibrational motions are cou-
pled, a change in the electronic configuration causes a change in the nuclear con-
figuration, so that when the molecule emits a photon and returns to the ground
electronic state, as shown in Fig. 3, the wavelength of the emitted photon will
depend on the location of the vibrational wave packet at the moment of emission.
Thus the vibrational mode is allowed to evolve freely in a known potential for a
certain time (this corresponds to the unitary evolution required for tomography)
following which its position distribution is measured with a certain precision from
the spectrum of spontaneous emission sampled at a given time [14].
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These simple physical ideas may be put on a firmer footing using the notion
of a time-dependent spectrum [15] based on an empirical scheme [16]. For example,
in the case relevant to our experiments, the spontaneous radiation from a sam-
ple of molecules in the near-forward direction is sampled at some instant using a
nonlinear-optical time gate, open for duration Γ-1 near a time T (which is refer-
enced to the creation time of the wave packet by a preceding pump pulse). The
spectrum of this temporal slice of fluorescence is then measured by a spectrometer
with passband centered at frequency Ω, and with spectral resolution γ [16]. Thus
the measured quantity is a two-parameter function S(Ω, T): the time-dependent
spectrum of spontaneous emission,

where pnm is the vibrational density matrix in the excited electronic state |2)
and Vnm is the difference of vibrational frequencies in this state. fkn contains the
details of the vibrational surfaces through the Franck-Condon factors. Tne unim-
portant constant K specifies the correct units of the spectrum. The function g is
determined by the details of the time-gate and spectrometer response functions,
and in our simple model is given by g(ω) = exp [—ω 2 /(4Γ 2 )] . It can be shown that
the time-dependent spectrum of Eq. (10) corresponds to projections of a rotated
phase-space density of the vibrational mode in the excited electronic state, with
the position mapped to emitted wavelength in a way that depends on the details
of the vibrational potentials$ [14]. The phase-space density is a smoothed version
of the Wigner function, since there is an inherent uncertainty in the emission fre-
quency when a time-gate is used to sample the spectrum. For the case of harmonic
vibrational potentials, the density can be obtained from the spectrum using the in-

The desired information can also be determined by photoelectron spectroscopy, see Ref. [17].



168 	 LA. Walmsley, L. Waxer, C. laconis

verse Radon transform [14]. But in general molecular vibrations are not harmonic,
so different inversion methods must be used to implement tomography.

Α small, easily invertable linear system can be developed from Eq. (10). Α
time series is obtained from the time-dependent spectrum by sampling. The time
series is a sampling of the truncated spectrum defined S'(Ω, T) = S(Ω, Τ) x G(Τ; τ)
where G(Τ; τ) is a sampling window of length τ. The Fourier transform of this
series with respect to Τ is

For a particular value of v, chosen typically to lie near a maximum of G(ν-Vnm) ,
there will be several pnm which contribute to S'(Ω, v). It is possible to resolve
the contribution of each density matrix element to the time-series spectrum at fre-
quency v by forming a linear system consisting of a set of different time series, each
associated with different values of the frequency filter setting, Ω. This system can
then be inverted to find the particular contributing density matrix elements [18].

To illustrate the efficacy of this method, Fig. 4 shows a simulated recon-
struction of the reduced density matrix for a molecular vibration in the 11 1 Σ+u
state of the sodium dimer, measured by its fluorescence to the Χ 1 Σ5 state. The
method is quite robust, and is capable of reconstructing a complicated mesoscopic
Schrödinger-cat state, simulated by superposing two quasi-coherent-state wave
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packets which are separated by one half a vibrational period. The mean vibra-
tional quantum number of each wave packet was set at = 9, and about 8 states
were populated around this quantum number. The temporal resolution was taken
to be 20% of the classical vibrational period (310 fs), or Γ = 0.0167 fs-1 , and the
total sampling time was τ = 23 ps, corresponding to the one-quarter fractional
revival period for this molecular state. In this case we used up to 13 different time
scans (each corresponding to a particular value of Ω). In order to ensure a stable
inversion, the values of Ω were chosen to be equally spaced across the fluorescence
spectrum of the molecular wave packets (i.e. in wavelength, between 630 nm and
810 nm corresponding to the wave packet classical turning points).

3.2. Chronocyclc spectrography for classical ultrashort optical pulse shape
reconstruction

Tomography has also been proposed as a method for the measurement of
the (classical) electric field of an ultrashort optical pulses . It has not yet been
implemented experimentally, since, for technical reasons, it is much easier to make
the measurements using a spectrographic method. The most widely studied of the
spectrographic methods is FROG, but there are alternates, such as a version of
Treacy's dynamic spectrogram known as temporal analysis of spectral components
or TASC.

These two techniques measure two different types of spectrogram: based
on either resolving the spectrum of temporally filtered components, as in FROG
[20-23], or time-resolving each component of the pulse's spectrum as in TASC
[24, 25] or other methods [26]. The two permutations of spectrometer and time-gate
make up the two simplest experimental arrangements for spectrographic measure-
ment of pulsed optical fields.

The dynamic spectrogram was shown by Chilla and Martinez [25] to possess
a simple phase retrieval algorithm in the limit of precise frequency measurements.
A better estimate of the input pulse field, using an iterative phase-retrieval algo-
rithm, is available if the measurement is imprecise, however, and the full temporal
dependence of each spectral component is measured.

Our experimental demonstration of TASC measured the output of a conven-
tional Kerr-lens modelgicked Ti:sapphire laser operating at 808.5 nm, producing
pulses 80-90 fs in duration, with a spectral FWHM of 11.8 nm. The pulses passed
through an optical isolator before being measured. This type of source has also
been measured using FROG [27].

The apparatus, shown schematically in Fig. 5a was a modified Michelson
interferometer, in one arm of which was a quasi-zero-dispersion grating spectro-
meter, with adjustable passband center frequency ωc . In the reference arm, the
input pulse was reflected by a corner cube and a plane mirror. The corner cube was
moveable to provide the variable temporal delay τ. These two pulses are combined
in a non-collinear geometry onto a 300-m-thick nonlinear crystal, resulting in
second-harmonic generation (SHG) which is detected by a photomultiplier tube
(PMT). The nonlinear optical interaction of SHG forms the time gate for the

§For an introduction to pulse shape measurement methods see Ref. [19].
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spectrally filtered pulse from the other arm. The spectrogram is obtained from the
resulting cross-correlations, which are recorded as a function of ,Ω and T.

Figure 5b shows the spectrogram recorded with spectrometer resolution of
one-tenth the spectral bandwidth of the input pulse. The spectrogram displays a
slight negative chirp, arising primarily from the residual chirp in the spectral filter
combined with the pulse's phase structure due to the dispersion of the optical
isolator. This intuitive spectrographic representation of the pulse is a feature that
TASC shares with polarization-gate-FROG, which uses a  third-order nonlinearity.

The extraction of the input spectral field Ε(ω) from the TASC spectrogram
involves a two-dimensional phase retrieval problem, which is well known to yield
unique solutions [20]. We apply an iterative algorithm based on the method of
generalized projection similar to that of FROG [28] to perform the two-dimensional
phase retrieval [24].

The amplitude and phase of the pulse that are reconstructed from the sono-
gram exhibit the correct phase structure expected from the passage of a nominally
80 fs transform-limited pulse from the Ti:sapphire laser through the dispersive
optical isolator.

4. Interferometry
4.1. Self-referencing interferometry for characterizing the spatial coherence

of classical optical fields

It is well known that the real part of Γ(x, x') is simply related to the fringe
pattern observed in two-beam interferograms. Despite this, interferometric mea-
surements have been sparingly applied to the measurement of fields with an arbi-
trary correlation function [29-34].

It is possible, however, to construct an interferometer capable of measuring
the space-shift variant two-point correlation function for fields at a remote plane
with arbitrary spatial coherence in a simple, accurate and effIcient manner [35].

The apparatus consists of a Sagnac interferometer, shown in Fig. 6a, con-
sisting of a polarization-insensitive nominally 50/50 beamsplitter and two mirrors.
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A glass block mounted on a rotation stage is located in the common path al-
lowing the Sagnac to be operated as a lateral shearing interferometer for both
transverse coordinates. Also in the common-path region are first-order quarter-
and half-wave plates that are used for quadrature selection. The object fields are
imaged onto a detector array by a lens, which must be placed after the interfero-
meter so that phase structure due to the imaging optics does not appear in the
measured interferograms¶. The field exiting the input port of the beamsplitter is
sent to a detector array. This arrangement ensures that both clockwise (cw) and
counter-clockwise (ccw) fields experience one reflection from and one transmission
through the beamsplitter, nulling the effect of deviations from 50% transmission
and allowing for polarization insensitive orientation of the beamsplitter. The shear

¶If the shear is not introduced in the object space of the imaging system, then the interfero-
grams exhibit tilt-like fringes perpendicular to the direction of shear that arise from the spherical
phase front that is imposed on the field by the lenses.
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is varied from Ο to 1 (as a fraction of the full field) in equal steps. The resulting
data consists of an array of numbers representing the measured intensity.

The two quadratures of Γ(x, x') are determined by the following procedure.
The quarter- and half-wave plates are oriented such that their fast axes are parallel
to the object field polarization. In this orientation both cw and ccw fields travel
equal optical path lengths. The intensity at the detector array is

where y is the position on the detector array, equal to the object field coordinate x
multiplied by the image magnification, and s is the shear. Measurement of Idet(Y; s)
for all s directly yields a sample of ReΓ(x, x') by subtracting out the individual
intensities. Measurement of ImΓ(x, x') is accomplished by rotating the half-wave
plate by 45 degrees so that the cw and ccw propagating fields experience different
path lengths.

Measurement of two spatially separated Gaussian beams that were super-
posed with either fixed phases or random phases show that the two-point cor-
relation function can be reconstructed quite reliably, and the integral degree of
coherence μ, defined in Eq. (4), evaluated. Note that μ provides a simple measure
of beam quality, although a different one than the more usual Μ 2 parameter. It
does not specify how close the beam is to a Gaussian, as does the latter value,
but rather, whether it is possible in principle (although not of course necessarily
in practice) to find an optical system that will produce a beam of size equal to the
diffraction limited spot size of a Gaussian beam.

We have used this technique to examine filamentation in the output of broad-
-area semiconductor lasers; an important problem for the design of high power
lasers of this type. Figure 6b shows the correlation function for the output of an
edge-emitting, AlGaAs, buried-heterostructure-type Fabry-Perot laser. The laser
was operated about two times above threshold. The intensity at the output facet
at this current was a four-peaked pattern, each peak centered at xi (i = 1 σ 4),
corresponding to four filaments being above threshold. The correlation function
reveals, however, that these filaments are not all coherent with one another. Evi-
dence for this is that the correlation function is close to zero in the regions near
(x3, xi) (i = 1,2,4). The implication of this is that there exists no optical system
that can transform this beam to a diffraction limited spot containing all of the
laser's output power. Also, it shows that the filamentation of the laser beam is
not necessarily due to a single mechanism. One might expect, for example, that if
self-focusing-induced modulation instability were responsible for the filamentation
then the degree of coherence of the filaments might depend only on xi - x2 .

4.2. Self-referencing interferometry for characterizing classical ultrashort optical
pulses

Interferometric characterization of ultrashort optical pulses has been per-
formed primarily using the test-plus-reference geometry, in either the time do-
main [36], or the frequency domain, in which guise it is known as spectral inter-
ferometry [37-39].
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Although some self-referencing methods have been developed for time-domain
measurements, including the classic interferometric autocorrelation [40], and other
methods [26] these either provide only partial phase information or require unrea-
sonably precise temporal measurement. Precise spectral measurements are possi-
ble, though, and spectral shearing interferometry (SSI) [41, 42] is a self-referencing
interferometric method that takes advantage of the direct phase retrieval routine
offered by interferometry. It does require, however, shifting the two spectra with
respect to one another by several hundred GHz. This can be done quite simply
using upconversion.

The spectral interferogram of two pulses that are identical in all respects
with the exception that they are shifted (sheared) in frequency with respect to
one another, is given by the frequency domain analog of Eq. (12)

where τ is the temporal delay between the two replicas.

Our apparatus for generating such a pair is shown in Fig. 7a. A portion
of the pulse to be characterized is split off and directed through a Michelson
interferometer. The output from the Michelson is a pair of test pulses separated in
time by delay τ. This pair of pulses is mixed with a stretched replica of the input
pulse in a type-II nonlinear crystal (250 µm BBO). In the limit of large dispersion,
the stretched pulse stretcher is highly chirped with each frequency occurring at
a different time. Since the pulses in the test pair are delayed with respect to one
another by τ , each is upconverted with a different spectral slice of the stretched
pulse. For a stretched Gaussian pulse of temporal duration Τ and spectral width Ω,
the spectral shear between the upconverted pair of test pulses is δω = τΩ/T. It is
necessary that Τ » τ so that the frequency of the chirped pulse does not change
over the duration of an individual unstretched test pulse. The resultant spectral
interferogram is recorded by a spectrometer.
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The phase reconstruction routine follows a procedure introduced by Takeda
et al. [43]. The recorded spectral interferogram is Fourier transformed with respect .

to ω, and all features at times near to and less than t = 0 are discarded. The
remaining signal for positive t is inverse transformed. After subtracting the carrier
frequency term ω0 from the resulting phase distribution we are left with the
relative phase, φw (ω 0 + δω) - φω (ω 0 ), between each pair of frequency components
separated by δω. (In the limit of small δω this is approximately the group delay
at ω0.)

Using the above apparatus and inversion procedure we reconstructed the
amplitude and phase of the pulses output from a Ti:sapphire oscillator. The test
pulses leaving the Michelson arrangement are separated by roughly 4 ps. The
dispersed pulse is stretched to 25 ps, roughly a factor of 300, such that a spectral
shear of 16% of the total pulse bandwidth is achieved and upconversion of the
test pulses with "continuous-wave slices" of the stretched pulse is assured. The
reconstructed pulse amplitude and phase in the time domain is shown in Fig. 7b.

4.3. Self-referencing interferometry for characterizing atomic wave functions

Shearing interferometry can also be used to measure the transverse compo-
nent of the wave function of the center of mass degree of freedom of an atom
moving in free space. Freyberger et al. [44] have recently proposed a method quite
similar to that described for optical fields in Sec. 4.1. Here we discuss an alternate
approach that makes use of shearing in momentum space rather than in configu-
ration space [45].

The set up is sketched in Fig. 8. It consists of a beam of atoms, width ∆x
in their ground electronic states, with reasonable collimation, propagating in the
z-direction. It is incident upon two quasi-monochromatic standing wave light fields
with wave vectors in the ±x directions. The fields differ in their wavelength, and
one has a phase adjustment that allows the nodes of the standing wave to be
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shifted through one half wavelength. An array of hot-wire or other atom detectors
is situated in the far- field of the apparatus.

If the standing light waves are strongly detuned from the atomic resonance,
and the gratings, width εi, are taken to be thin, and if the two gratings are closely
spaced, so that there is no lateral spreading of the beam within the grating region
due to scattering or diffraction, then the wave function of the beam immediately
to the right of the second grating is

where Ti(x) is the grating (spatial) response function. Of course, the atom also
accumulates a phase Φi = Ετi /ħ, where τi is the approximate time taken for the
atom to traverse the grating.

If the beam is then allowed to propagate in free space then the wave function
Ψ(ξ z) at the detector plane, in the far-field of the gratings, is proportional to
the Fourier transform of the wave function immediately after the gratings. The
detected signal in the vicinity of the first-order scattered beam is approximately

This part of the signal depends on the momentum space correlation func-
tion of the initial state, and from it the momentum representation of the initial
density matrix can be reconstructed, even for mixed states. The requirement of
well-separated first-order diffraction sets a lower bound on the wave functions that
can plausibly be reconstructed using this technique. In particular the scattering
light beams ought to satisfy k1, k2 > 2π/∆x.

• A procedure for the complete reconstruction of this quantity follows from
Eq. (15), and is quite analogous to that described in Sec. 4.2 for the optical field.
The two quadratures of the density matrix are measured by adjusting the phase
between the two gratings to be first 0 then ι/2. Simple estimates indicate that
this method should be experimentally feasible for sodium atoms moving at about
10 m/s, and having a divergence of less than 2.5 mrads, using two laser beams
tuned near the D lines, that may be detuned from one another by about 50 nm
while maintaining a relatively constant Rabi frequency.

5. Interferometric spectrography
5.1. Τest-plus-reference interferometry for quantum state reconstruction

of ultrashort optical pulses

As an example of the importance of both classical and quantum fleld mea-
surements we discuss in this section a method for measuring the multimode quan-
tum state of a pulsed quantum optical fleld. The single mode problem has been
solved using optical homodyne tomography, (OHT) [4] and partial reconstruction
has been developed for the two-mode problem [46]. As Raymer has shown [48], a
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complete state reconstruction for even the two-mode problem using ΟHΤ is un-
pleasantly cumbersome. However, it is possible to reconstruct the Q-function of a
multimode field using a simple multi-detector apparatus, and using a much simpler
arrangement [48].

Consider a balanced test-plus-reference spectral interferometer, into which
the quantum (test) pulse and a classical (reference or local oscillator (LO)) pulse,
duration τp , enter. The spectra of the radiation at the two output ports of the
beamsplitter are detected by two multichannel detector arrays, and the difference
photocount numbers N wi are taken channel by channel from the array outputs. The
discrete Fourier transform of the Nωi ;is taken to yield a set of complex numbers
Nt, [49]. The real and imaginary parts of this set of numbers are realizations of
the two quadratures of a set of temporal modes of the field, each displaced by a
time iτp from the reference pulse. This procedure is followed on each shot, and the
statistics of the set Nti constructed. Then it can be shown that the probability
distribution of these numbers scaled by the LO field amplitude is proportional to
the joint Q-function for the set of temporal modes

where Χti, and Υti, are the in-phase and in-quadrature field amplitudes for mode ti.
Note that the single or two mode statistics can be obtained by simply tracing
over the remaining modes. The total number of modes on which information is
simultaneously obtained is equal to the number of pixels (or resolution elements)
of the multichannel detectors.

Note that the spectral interferogram is sensitive only to the modulus of the
delay of the LO pulse from the test pulse. Thus there is an uncertainty as to
whether the detected photons came from a temporal mode that arrived at the de-
tector before the LO pulse or after it. This is analogous to the case in heterodyne
detection in which the measurement space is increased to include the image modes
of the test field. Shapiro and Wagner [50] have shown that this is equivalent to
making a joint measurement of the two quadratures of the signal mode simulta-
neously provided the image mode is in the vacuum, so that measurement of the
multimode Wigner function of the test field is not possible.

6. Conclusions
The similarity of detectors and dynamic equations for both quantum matter

waves and classical optical fields allows techniques developed for the
vharacteriza-tion of one to be easily translated to the characterization of the other. We have

illustrated this by several experimental and numerical examples. Note that both
characterization procedures are necessary when measuring the state of a quantum
field, since then one must first characterize the classical mode function in which the
quantum system exists. The important and emerging problem of quantum state
engineering in both matter and radiation will no doubt benefit from the ability to
measure fields of all types, although new methods need to be developed to tackle
the multimode problem in matter. Given the recent activity and progress in this
field, it is likely that such techniques will be available in the near future.
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