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CONTROL OF OPEN QUANTUM SYSTEMS
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Spontaneous decay of excited cold atoms into a cavity can drastically
affect their translational dynamics, namely, atomic reflection, transmission
and localization at the interface. We show that the quantum Zeno effect on
excitation decay of an atom is observable in open cavities and waveguides,
using a sequence of evolution-interrupting pulses on a nanosecond scale.

PACS numbers: 42.50.Lc, 03.65.Bz, 03.75.Be, 42.50.-p

1. Transmission of emitting tunneling atoms in cavities

Spontaneous emission in atomic tunneling has been virtually unexplored
before our recent work [1]. Since tunneling is a distinct manifestation of wave-like
properties, it is important to raise the basic questions: can spontaneous decay of
internal excitations in tunneling atoms be viewed as a decoherence process that
is analogous to its counterpart in diffracted atoms? and if so, how would such
decoherence manifest itself?

We have put forward a theory of spontaneous emission from a two-level atom
as it tunnels through a square potential barrier [1]. Our theory demonstrates that
the emission process is describable as loss of coherence between interfering clas-
sical trajectories in space-time, which constitute the atom tunneling motion. The
emitted photon at each frequency is correlated to particular atomic classical trajec-
tories, in a way which makes them measurably distinguishable. This distinguisha-
bility destroys their interference [2], as does "which-way" ("Welcher-Weg") infor-
mation, which is obtainable from spontaneous emission in diffracted atoms [3, 4].

The ensuing analysis rests on two observations. (i) The overall duration of the
decay process is much longer than the inverse transition frequency ω (see below).
This allows us to resort to the rotating wave approximation (RWA), which is used
in the Wigner—Weisskopf (WW) treatment of spontaneous emission [5]. (ii) Nearly
all of the cavity-enhanced spontaneous emission is funneled into the continuum
of nearly resonant modes with wave-vectors q (ω/c)ź, which are aligned with
the cavity axis z, perpendicular to the atomic incidence axis x. This allows us to
use the dipole approximation, since q . x 0, and neglect off-axis photon recoil
effects on the atomic wave packet. Hence, the RWA interaction Hamiltonian of
the atom with the cavity-mode continuum becomes effectively one-dimensional,

(135)
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Hint = —ζ(x) f dωp(ω)[gω α |e)(g| + h.c.]. Here ((x) = 1 for Ο < x < L and
Ο elsewhere, i.e., the interaction is confined to the cavity, whose x-axis extent
coincides with that of the barrier; p(ω) is a Lorentzian mode-density distribution
associated with the cavity-mode line width n [6]; Yω is the coupling of the atom
to the cavity mode at ω and α is the corresponding annihilation operator. The
transition frequency peg is shifted (renormalized) by the difference between the
AC Stark shifts of |e) and f|g), ∆AC = : Ω2e /δe— Ω2g/δ0).

In order to analyze the entanglement of emitted photon states with the trans-
lational degrees of freedom of the tunneling atom, we have developed a theoretical
approach which combines the WW treatment [5], resulting in exponential decay of
the excited state, with the Feynman path-integral method, which yields a coherent
sum over the atomic classical trajectories contributing to tunneling [7].

The above analysis yields the probability for an atom incident as a nearly
monochromatic wave packet to be transmitted in the excited state

where σ(Εk, V) is the transmission amplitude for a structureless particle of kinetic
energy Εk through a square potential barrier of height V and length L,

k = V2mΕk/ħ and p = V2m(Εk - V)/ħ being the corresponding wave vectors
outside and inside the barrier, respectively. The effect of spontaneous emission is
to shift the effective potential V by -iħΓ.

Plots of Eq. (1) reveal the overall diminishing of Pei with γ in both the tun-
neling (below-barrier) and allowed (above-barrier) regimes of Ek. The correspond-
ing probability Ρ9 of the transmitted ground state wave-packet is an incoherent
sum (integral) of partial wave-packet transmission probabilities associated with
photon emission at ω

where .F(ω) = p(ω)|gω | 2 /(∆-2 + 2) and σω (Εk, V) is a complicated function of
Εk, V and ω. The most salient effect of spontaneous emission is seen to be (Fig. la)
the huge enhancement of Ρ as a function of γ for atoms initially in the deep
tunneling regime pL = ‚/2m(V - Ek)L/ħ> 1.

In order to gain more insight into the above general results, we shall hence-
forth assume that the cavity line width n and Εk satisfy the following inequalities:

The spectrum of spontaneous emission is then limited to |∆| « Εk and becomes
Lurentzian in this range, .F(ω) £

γ

 (∆), since the spectral variation of p(ω) and
|gω| 2 is slow, p(ω)|g|2 2πγ, in accordance with the WW approximation. The
equation for σ can now be simplified to
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It is seen from Eqs. (3) and (5) that the dramatic enhancement effects in the
tunneling regime are due to the first term in (5), corresponding to atoms that have
decayed to the ground state shortly after entering the barrier and are subsequently
transmitted through the barrier as unexcited atoms with kinetic energy Εk - ħΔ,
which can be above the barrier if ∆ < 0. By contrast, the second term in (5)
corresponds to atoms that have decayed shortly before exiting the barrier after
having effectively been transmitted as excited atoms with the initiαl kinetic energy
Εk, whence this term is exponentially small in the tunneling regime. The use of
Eq. (5) in Eq. (3) therefore leads to the enhancement of Ρ (Fig. 1a) and f^ĝr

due to the possibility to gain kinetic energy from the broad vacuum field reservoir
by emitting a photon detuned below the resonance ħω eg . In the deep tunneling
regime, assuming that γ « (V = Εk), Eqs. (3)-(5) allow us to roughly estimate
that the atoms have probability of order

to jump over the barrier into the allowed energy regime by emitting a photon with
∆< Εk-V< 0(Fig.1).

Under the assumptions leading to Eq. (5), along with ħΔ « Ek, we can
obtain a simplified expression for the total transmission probability

where (t, V), the Fourier transform of σ(Ε, V), is the impulse response (to a
temporal δ-function) for transmission of a structureless particle. We thus obtain
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the following important result: the total transmission probability Ρtrtotcoincides,
in the limit of narrow spontaneous line width γ [Eq. (4)], with the transmission
probability of a partially incoherent wave packet of a structureless particle with
coherence time γ (see Ref. [8]).

The following conclusions can be inferred from the above analysis. (á) The
probability distribution of the transmitted atoms is approximately Lorentzian for
final kinetic energies Εk = ħΔ above the barrier, whereas their counterparts below
the barrier only contribute an exponentially small tail to this distribution. (b) The
fact that fast atoms emerging from the barrier are almost always unexcited means
that the barrier acts as a "filter" that transmits almost only atoms that have
already decayed.

These results open a new vista into the transition from quantum dynam-
ics to classicality via decoherence by focusing on the c fects of excitation decay
on atomic tunneling. In the limit of negligible decay γ → 0, which is realizable
by detuning the cavity off resonance with ω eg , the excited atomic wave packet
with Εk < V exhibits tunneling, which is a result of interference between many
classical trajectories, and is characterized by exponentially low transmission Fe"
[Eq. (1)]. When γ is appreciable, the wave packet is dominated by th ,rtion
that has decohered by decay into the field-mode continuum and has thereby lost
its tunneling properties: its energy spread becomes classical (statistical), giving
rise to a Lorentzian tail into the above-barrier energy range, thereby allowing for
enhancement of the transmission [Eqs. (3),(7)]. The effects of this decoherence on
barrier traversal times will be discussed elsewhere.

The results predicted here can be experimentally realized by a variety of
cold atoms. In accord with Eq. (4), the lifetime of the |e) → |g) transition should
preferably be long, above 10 -6 s. A confocal cavity whose finesse is 10 5 and
subtends a solid angle of 0.1 steradians can enhance spontaneous emission rate
γ by a factor of ,^s 30. The cavity line width n should be much larger than γ,
i.e., preferably above 10 MHz. Correspondingly, the potential energy V and the
kinetic energy Εk must be above 0.1 GHz, which requires the laser Rabi frequency
Ωe(g) and detuning δe(g) to be well within the GHz range. This implies that the
transition frequency ω eg can lie anywhere between the GHz and the optical ranges.

2. Atomic reflection and localization at cavity interfaces

We have recently considered an excited atomic wave packet or an atomic
beam propagating from a region where spontaneous emission is negligible (x < 0)
to a region where spontaneous emission is strongly enhanced (x > 0), due to the
high density of the electromagnetic field modes. The wave function of the total
system (atom plus field) can be written in the following general form in the rotating
wave approximation:

where the ket-vector |e, {0}) denotes the atom in the excited state with no pho-
tons in the field, whereas g, {q}) corresponds to the ground state of the atom
with a photon emitted at a mode q, and Ψe(q) are the corresponding amplitudes.
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One obtains coupled Schrödinger equations for the envelopes of these states given
an atom with initial energy Ε and transition frequency ω0 , ψe(r) and ψq(r) by
assuming  q (r,t) = ψe,q(r)e—1(Ε+hω0/2)t Far from the interaction region the
solution describes propagation of the atomic wave packet. The total energy of the
incident excited atom Ε + ħω0 is then equal to the kinetic energy of the ground
state atom plus the emitted photon energy ħω q .

The coupled equations for Ψe and ΨΨ yield a complicated integro-differential
wave equation for ψe (re ), with Γ(r, r') acting as a non-local complex potential
whose shape and strength are determined by the confined mode eigenfunctions

εq(r). If. the line width of the spatially confined modesħncis much larger than
the atomic energy E, the recoil energy Erec = Ι 2ω20/2mc2 and the spontaneous line
width in the confined reservoir, ħγc, then the correlation ι length of the interaction
of the emitted photon with the atom is much shorter than the spontaneous decay
length and the de Broglie wavelength λDΒ. Such an atom effectively moves in a
local complex potential

where µ is the atomic dipole matrix element, ε q (r) are the field mode amplitudes
and ∆ is the detuning of the atomic transition frequency ω0 from the center of
the spectral line of the reservoir.

In order to concentrate on the atomic motion along the axis of incidence x
and avoid diffraction effects caused by the local potential in the directions perpen-
dicular to x, we consider a multimode confocal cavity where the many degenerate
modes contributing to Γ(r) render it approximately uniform in the directions per-
pendicular to x. We assume that the transition frequency ω0 is resonant with the
Lorentzian center of the degenerate modes. Then the real part of Γ(x) is much
less than the imaginary part γc(x) = Im{Γ(x)}. We then obtain

For a step-like interaction profile γ c (x) = γc0(x), where θ(x) is the Heav-
iside step function, the probability to detect an excited atom decreases as  e 1½' ,
where k = ‚/2m(Ε+iħγc)/ħτΡ, so that only the fraction |r| 2 of excited atoms re-
mains at large negative x (to the left of the interface). This reflection increases
with the spontaneous emission rate γ . The atomic interaction with the confined
vacuum reservoir for ħγ > Ε is thus analogous to the skin effect of light reflection
from metals. If the energy of the incident atom is comparable to Erec, the width
∆x of the interface should satisfy ∆x λ DΒ (Ε) λοpt . A realistic description of
the atomic entry into a confocal cavity shows a much lower reflection probability,
even for subrecoil energies. However, when the real part of Γ(x) contributes too,
for ω0 well off the center of the Lorentzian spectrum (large ∆c), the cavity can be
strongly reflective. This spectral dependence of the reflectivity on the detuning is
characteristic of the atomic skin effect.

The spatial variation of the q-mode amplitude in Eq. (8) can be estimated
for a strong decay ħγc » Ε and incidence energy well above the recoil limit. Then
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Ψq a exp(+ikqx ) , where ħk q = V2m(Ε — ħΔ q) and Δq = ωq - ω0. Whenever
Ε > ħΔ q , kq becomes imaginary and ψ q (r) is exponentially localized at the in-
terface between free space and the confined-field region. A solution with imaginary
kxq represents a transient atomic wave packet which disappears after the incident
atomic wave packet decays or leaves the interface, and is accompanied by a tran-
sient bound photon, which eventually disappears with it, after the time ~ ħ/ΔΕ,
the inverse of the energy bandwidth ∆Ε of the incident atom. If such a photon is
detected, then a localized atomic state is formed. The subsequent evolution of the
atomic wave packet is governed by the free-space Schrödinger equations with the
localized atomic distribution serving as the initial condition.

To conclude, we have found that excited-atom reflection from the interface
between two spatial regions with different spontaneous emission rates is appre-
ciable for cold atoms and enhanced coupling to the mode continuum, when the
effective width of the interface is smaller than the atomic de Broglie wavelength.
This reflection is analogous to the optical skin effect of metal surfaces. Transient
localized atomic state appear at the interface while an excited two-level atom is
crossing it, due to detection of spontaneously emitted "bound photons" at "for-
bidden" energies, having short lifetime and range of propagation. The regime con-
sidered here is essentially different from Ref. [9], where the correlation time of the
atom with the emitted photon is large, thereby responsible for the oscillation of
the atomic population.

3. Quantum Zeno effect on atomic excitation decay in resonators

The "watchdog" or quantum Zeno effect (QZE) is a spectacular manifesta-
tion of the influence of continuous measurements on the evolution of a quantum
system. The original QZE prediction has been the inhibition of exponential decay
of an excited state into a reservoir, by repeated interruption of the system-reservoir
coupling by measurements [10-12].

We have recently demonstrated [13] that the inhibition of nearly-exponential
excited-state decay by the QZE in two-level atoms, in the spirit of the original
suggestion [10], is amenable to experimental verification in resonators. Although
this task is widely believed to be very difficult, we have shown, by means of our
unified theory of spontaneous emission into reservoirs with arbitrary mode-density
spectra [11], that several realizable configurations based on two-level emitters in
cavities or in waveguides are in fact adequate for QZE observation. The possibili-
ties for such observation have been examined in various regimes that can arise in
resonators.

We start with a general analysis of the evolution of an initially excited
two-level atom coupled to an arbitrary density-of-modes (DOM) spectrum p(ω)
of the electromagnetic field in the vacuum state. At time τ this evolution is
interrupted by a short optical pulse, which serves as a quantum measuring de-
vice [14-17]. Its role is to break the evolution coherence, by transferring the popu-
lations of the excited state |e) to an auxiliary state which then decays back to |e)
incoherently [15].

As in our previous treatment [18], the atomic response, i.e., the emission rate
into this reservoir at frequency ω, which is g(ω)|2ρ(ω), ħg(ω) being the field-atom
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coupling energy, is divided into two parts,

Here Gs (ω) stands for the sharply-varying (nearly-singular) part of the DOM
distribution, associated with narrow cavity-mode lines, the frequency cut-off in
waveguides, or photonic band edges. The complementary part Gb(ω) stands for
the broad portion of the DOM distribution (the "background" modes), which
always coincides with the free-space DOM p(ω) ω 2 at frequencies well above
the sharp spectral features. In an open structure (see below), Gb(ω) represents the
atom coupling to the unconfined free-space modes.

We cast the excited-state amplitude in the form αe(τ)e—iωaτ , where ω a is
the atomic resonance frequency. Then, for arbitrary DOM spectra and coupling
strengths, one can reduce the equations for spontaneous decay [19] to the following
evolution equation, up to the interruption time τ:

Here ∆ = ω a - ωs , ωs is a characteristic frequency corresponding to the maximum
or the singularity of the sharp spectral feature, whereas Φs (t) and Φb(t) are the
time-domain Fourier-transforms of Gs (ω) and Gb(ω), respectively,

Restricting ourselves to sufficiently short interruption intervals τ such that
α e(τ) 1, yet long enough to allow the rotating wave approximation (RWA),
Eqs. (10),(11) yield

The terms within the parentheses in Eq. (12) are the contribution of the background
DOM, simplified according to the Weisskopf—Wigner approximation [19]. Here
γb = π) is the effective rate of spontaneous emission into the background
modes.

Equation (12) is obtained to first order in the atom-field interaction. To the
same accuracy, the excited state probability after n interruptions (measurements),
W(t = nτ) = e(τ)|2n, can be written as

In most structures γι  is comparable to γ! and gives rise to an exponential decay
factor in the excited state probability regardless of how short τ is, i.e., κ = κ + Υb,
where κ is the contribution to κ from the sharply-varying modes.

Thus the background-DOM effect cannot be modified by QZE. Only the
sharply-varying DOM portion allows for QZE, provided that
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rises with τ for sufficiently short τ. This is essentially a condition on the correlation
(or memory) time of the field reservoir.

First and foremost, we wish to apply the above analysis to the case of a
two-level atom coupled to a near-resonant Lorentzian line centered at ωs , charac-
terizing a high-Q cavity mode or a "defect" mode in a photonic band structure [19].
In this case, Gs (ω) = g2s Γs /{π[Γs2 -F (ω — ωs ) 2]}, where gs is the resonant coupling
strength and Γs is the line width (Fig. 2 — inset). In the short-time approxima-
tion, taking into account that the Fourier transform of the Lorentzian Gs (ω) is
Φs (t) = ge-Гst , Eq. (12) yields (neglecting the background modes)

The QZE condition is τ « (Γs +|∆|)-1 , gs 1 : obviously, it is easiest to satisfy
this inequality on resonance, when ∆ = Ο. Then Eq. (16) yields

Only the κs term decreases with τ, indicating the QZE inhibition of the smooth
nearly-exponential decay into the field reservoir as τ →Ο. SinceFsand ∆ have
dropped out of Eq. (17), the decay inhibition is the same for both strong- and
weak-coupling regimes (Fig. 2). Physically, this comes about since for τ « g 1
the energy uncertainty of the emitted photon is too large to distinguish between
reversible and irreversible evolutions.

The experimental scheme we envisage for observing the above effects is as
follows. A fraction of an atomic beam oriented perpendicular to the axis of a confo-
cal cavity is excited to state |e) by a laser outside the cavity. Within the cavity the
atoms repeatedly interact with a pump laser, which is resonant with the |e) --> |tt )
transition frequency. The resulting |e) —> |g) fluorescence rate is collected as in
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Ref. [6] and monitored as a function of the pulse repetition rate. Each short, intense
pump pulse of duration t p and Rabi frequency Ωp is followed by spontaneous decay
(via fluorescence) from |u) back to |e), at a rate γu. The "measuring" pulse has to
satisfy tp-1, «^u « Ω,, so as to destroy the coherence of the system evolution, on
the one hand, and reshuffle the entire population from |e) to |u) and back, on the
other hand (Fig. 3 — inset). By combining these requirements with the demand
that the interval between measurements significantly exceed the measurement
time, we infer the inequality τ » t p . The above inequality can be relaxed to require
τ » γ; 1 if the "measurements" are performed with π pulses: 'Qt = π, t p «. γu
The only real constraint is that (Γs + 00|)-1 » τ » γ;1. This calls for choosing a
|υ) —^ |e) transition with a much shorter radiation lifetime than that of |e) → ^g).
The curves in Figs. 2 and 3 are calculated for such a choice, and for feasible cavity
parameters: Γs = (1 — R)c/L, Os = Vcfγf/(2L), = (1 - f)γf , where R is
the geometric-mean reflectivity of the two mirrors, f is the fractional solid angle
(normalized to 4π) subtended by the confocal cavity, and L is the cavity length.

. We now extend the above analysis to any DOM distributions characterized
by a cut-off frequency, as in a waveguide, a photonic band edge or a phonon
reservoir (with Debye cut-off). A specific model for the spectral response of a
DOM distribution with a cut-off is represented by [191 (Fig. 3 — inset (a)).

where ωs is the cut-off (or band-edge) frequency, Γs is the cut-off smoothing pa-
rameter, C is the. strength of the coupling of the atomic dipole to this reservoir,
and O(.) is the Heaviside step function. Upon computing the Fourier transform of
Eq. (18), we find from Eqs. (10),(11) that the QZE condition is
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As mentioned above, the QZE is now less pronounced (see Fig. 3, where we used
the exact solution to compute αe(τ)). This case is realizable for an active dipole
layer embedded in a dielectric waveguide, using a level scheme similar to that of
Fig. 2.

Instead of disrupting the coherence of the evolution by a sequence of "im-
pulsive" measurements, i.e., short π-pulses, we can achieve this goal by noisy-field
dephasing of α e (t). Random ac-Stark shift by an intensity-fluctuating field results
in

where F(∆) is a Lorentzian spectrum whose width is (∆ω2)τc, the product of the
mean-square Stark shift and the noisy-field correlation time.

Our unified analysis of two-level system coupling to field reservoirs has re-
vealed the general optimal conditions for observing the QZE in various structures
(cavities, waveguides, phonon reservoirs, and photonic band structures). We note
that the wave function collapse notion is not involved here, since the measurement
is explicitly described as an act of coherence-breaking [15]. This analysis also clar-
ifies that QZE cannot combat the background-modes contribution to exponential
decay, and`is therefore inadequate for decoherence error prevention [20]. The best
way to achieve such prevention is by switching-off the entire density of modes, i.e.,
placing the resonance well within an ideal band gap.
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