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Photoionization of Rydberg atoms is considered in the quasi-classical
(WKB) approach. The total nonlinear strong-field ionization rate is found
and investigated. The time of ionization, as a function of a growing field-
-strength amplitude, is shown to approach asymptotically the Kepler period
tx. Interference stabilization of Rydberg atoms is confirmed to exist in the
case of short pulses (shorter than the Kepler period).
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1. Introduction

Interference stabilization (IS) of Rydberg atoms is known [1, 2] to arise
due to Rydberg-continuum A-type field-induced transitions between neighboring
Rydberg levels. In such a case, the time of ionization ¢i(go) of a Rydberg atom
in its dependence on the light field strength amplitude €y was predicted [1, 2]
to have the “death-valley” form, i.e., the form of a curve with the minimum at
some critical field e.. The quasi-classical (WKB) estimate of €. and tmin = ti(ec)
are very simple: . ~ w5/3, where w is the frequency of light (in atomic units)
and #min & tx = 27n3, where n is the principal quantum number of the originally
populated Rydberg level and tx is the classical Kepler period.

The results of the first works on IS were generalized later [3, 4] to take
into account a possibility of excitation of Rydberg levels with higher values of the
electron angular momentum £ via the A-type Raman transitions. The main result
of such a generalization is the prediction that the “death-valley” behavior of the
function ¢i(€o) can be replaced by.the “death-plateau” behavior which means that
at €9 < & the function ti(go) falls, then at €9 ~ €. achieves the level ~ tx, and

(77)
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remains at this level more or less constant at a rather large interval of € (such
that g9 > €c).

All the above-mentioned theories of IS [1-4] were based on a series of approx-
imations [such as the rotating wave approximation (RWA) and the “pole” approxi-
mation (PA)] validity of which is sometimes far from being evident. An alternative
approach to the theory of strong-field photoionization of Rydberg atoms, free from
these approximations, can be based on an attempt to apply the quasi-classical
approach directly to the Schrodinger equation for a Rydberg electron in a light
field [5, 6]. In the framework of such an approach, in Ref. [5] the complex quasiener-
gies of the system were found. However, the consideration of Ref. [5] failed to de-
scribe in a satisfactory way time evolution of the ionization probability as well as
many other important characteristics of the strong-field photoionization process.
For this reason, one of the conclusions of Ref. [5] consisted of the suggestion to
consider in future, in the framework of the same general quasi-classical approach
as in Ref. [5], the initial-value rather than the eigenvalue problem. The first at-
tempt to realize such a program was made in our recent paper [6]. In this talk we
report about our newest findings in this direction. '

2. Strong-field quasi-classical solutions of the Schrc'idinger equation

The main idea of the quasi-classical approach [5-7] can be formulated as an
assumption that the field-induced Rydberg-continuum transitions occur mainlyin
the region of electron—nucleus distances r of the order of the so-called quasi-classical
length ry, where [7] '

rq = w3, ' (1)

Though, typically, much larger than one (rq > 1 at w < 1), the quasi-classical
length is usually much shorter than the size of the Rydberg orbit rmax = 2n?,
Tq € Pmax. Under these conditions, the centrifugal energy in the Schrédinger en-
ergy, estimated at r ~ rq, appears to be much smaller than the Coulomb potential
energy 1/r, if only average angular momentum is smaller than w=1/3 > 1 [7, 8].
This observation gives rise to the approximation of slow angular motion [5, 6],
under which the centrifugal energy is dropped at all from the atomic Hamiltonian.
As the result, the original three-dimensional Schrdodinger equation can be reduced
to the one-dimensional radial equation

.Ox(r,t;0 162 1 . :

1%——) = [—56_1'5 -t cos(f)eo(t)r sm(wt)] x(r,t;0), (2)
where x = 7R and R is the radial wave function of an electron; in a light field, both
x and R depend parametrically on the angle 6 between the field-strength vector go
and the electron position vector; €o(t) is a slow field-strength amplitude describing
how a light pulse is switched on and off. Following to the ideas of Refs. [5, 6], let
us solve first the Schrédinger equation (2) at a frozen angle § (§ = const) and,
then, average the results over 6. At the first stage, to simplify notations, let us
drop cos @ in Eq. (1) and further formulas keeping in mind that in the final results
cos § has to reappear in front of q(t). -
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Our goal consists of solving the initial-value problem, i.e., of finding non-pert-
urbative solution of Eq. (2) x(r,t) obeying the initial condltlon

xX(r, )|tm—oo = X (r, t) = X /;r;:%msin_ {/0 pn(r’)dr'} exp{—iEnt}, (3)

where x5 )(r t), En = =1/2n?, and p,(r) are the wave funcﬁon, energy and
quasi-classical momentum of the initially populated field-free Rydberg state,
1 ' ’
Pn(r) =4/2 (E,. + —). ‘ 4)

By using the Euler formula for the sine on the right hand side of Eq. (3), let us
present both X(O)(r t) and x(r,t) in the form of sums of diverging and converging

waves, X,, :t(" t) and x+(r,t), respectively. The initial conditions for x+(r,t) have
the form

Fi o PN :
)|t 00 = e + (7)dr —iEnt § . 5
x£(r,t)]s B () exp{ 1/0 Pa(r)dr’' -1 } (5)

Let us search for the solutions of the Schrodinger equation in the form -
x+(r,t) = S S — exp {:i:i /r Pn(r)dr'—1E t—ios (r,t)} (6)
27n3p,(r) 0
with the new unknown functions o1(r,t) obeying the zero initial conditions
04(r, Dl eo = 0. » )
In accordance with the above-discussed role of relatlvely small electron—

nucleus distances 7 ~ rq € Tmax, We can expand the quasi-classical momentum
pn(r) (4) in powers of 7|E,| = r/rmax < 1t

pu(r) /24 CRVE | ®

Under this approximation and with x.+(r,t) (6) substituted into Eq. (2), by drop-
ping the second-order derivative of o+ (r,t) over r, let us reduce the arising equa-
tion for o4 (r,t) to the following simplest form:

Ooy(r, t) 2004(r,t)
- Ot r  Or

The solution of this equation is easily found to be given by

ox(r,t) = /_; dt’eq(t') sin(wt’)ra [t Ft + r(r)]

= go(t)rsin(wt). 9)

= /ooo dt"eg(t — t") sin[w(t — t")]ralt” F 7(r)], | (10)

where 1" =t — ¢/ and T(r) is the time of motion from 0 to r of a classmal particle
with zero total energy in the Coulomb field

(r) = T4 ﬁ3/2
0= 5 | -
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rai(t) is the corresponding classical trajectory, or the solution of the Newton equa-
tion, or the solution of the equation 7(rq) = t:

2/3

ralt) m St?l? (12)
and rg(—t) = rq(t).

By substituting o4 (r,t) (10) into Eq. (6), we find the searched for solution
of the Schrédinger equation (2) obeying the appropriate initial conditions (5) and
(7). In its dependence on ¢, the functions exp[—ic(r,t)] contain a periodical part
[via sin[w(t — )] in the last expression on the right hand side of Eq. (10)]. By
expanding these periodical functions in the Fourier series, we get -

X(r,t) = xe(rt) =Y [xF )+ x5 (n )], (13)
k k

where k = 0,£1,42, ... and the functions xf (r,t) are given by
inl/4
+ _ Fir
Xk (’I",t) = 23/4\/7;1—2-Jk[<:§:(7°7 t)]
X exp {:l:i[23/2\/1'~ + Enr(r)]~i(En + kw)t—ikq&i} . (14)

Here J;, are the Bessel functions, ¢4 are some phases, and (4 (r,t) are the functions
very similar to ox(r,t) (10):

Ce(r,t) = /000 dt"eo(t — ") exp(iwt”)rat” F 7(r)]

. (15)
In a general form, Egs. (13)—(15) solve the problem formulated in the beginning of
this section: they determine the solution of the Schrodinger equation obeying the
initial condition (3). :

/t dt'eo (') exp(—iwt’)raft — ' F 7(r)]

-0

3. Above-threshold and total ionization

The quickest variations of the functions xi (r, ¢) (13) in time ¢ are determined
by the factors exp[—i(E, + kw)t]. For this reason, the functions xx(r,t) can be
interpreted as the wave functions of the above-threshold wave packets with mean
energies equal to E, + kw. The ¢- and r-dependent electron density in the k-th
above-threshold wave packet is given by

pi(r,t) = Ixe(r, )1 = Ixi (r,) + x; (r, )% (16)
The total probability of ionization to the time ¢ can be determined as

w;(t) = ;/0 drpg(r,t) = ,;/0 dr|xz(r, t) + x5 (r 1) 17

Let us discuss now the r-dependence of the functions xi(r,t) (14). The
- quickest part of this dependence is determined by the factor exp(i23/ 2,/r). This
dependence disappears in the squared absolute values of the functions Xf (r,t). But
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in their cross-product, 2Re{[x{ (r,t)]*x} (r,t)} o cos(25/2\/7), this dependence
gives rise to very fast oscillations with a period of the order of one in atomic units.
Being averaged over these fast oscillations, Eq. (17) gives

w® = [ dr (08 + i ()
k=170

= [ g}f {2 = R+ (r, 0] - BL-(r, 0]} (18)

Let us discuss now the structure of the functions (4 (r,%) (15) determining
the arguments of the Bessel functions in Egs. (14) and (18). In accordance with
the definition (15), these functions are given by the integrals of products of the fast
oscillating [exp(—iwt’)] and slow (go(t')raft — ¢’ F 7(r)]) functions. Such integrals
are known to be determined mainly by the ends of the integration regions, if only
the slow part of the integrand is everywhere smooth. An important part of these
slow function is the function rg[t — ¢’ F 7(r)] in which ¢ < ¢ and 7(r) > 0. For
the lower sign the argument of 7 is always positive, whereas for the upper sign it
changes sign at ¢/ = t—7(r). In terms of the corresponding classical trajectories this
means that in the first case the classical particle comes monotonously from infinity
to the point r, whereas in the second case (the upper sign in the argument of r)
it comes from infinity, reaches the origin » = 0, experiences reflection, and then
returns to the point r (see Fig. 1). In fact it appears that just this reflection from
the origin is responsible for irreversible ionization. Mathematically, the reflection
of the classical trajectory from the origin means that, in the case of (4, the slow
part of the integrand has a cusp at the point ¢ = ¢ — 7(r). Hence, in this case

{"}: relt-t £ |
b ‘

t-(r) t

Fig. 1. The classical trajectories ra[t—t'+7(r)] (a) and ra[t—¢t' —7(r)] (b) determining
the functions {—(r,t) and {4 (r,t) (15), respectively. The arrows indicate the direction
of motion over the classical trajectories.
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the integral over d#’ from —oo to ¢ turns in fact in the sum of two integrals with
different integrands, from —co to ¢ — 7(r) and from ¢ — 7(r) to ¢. This is the limit
t =t — 7(r) in both of these two integrals that gives the main contribution to the
irreversible ionization. Not dwelling upon any further details of calculations, let
us reproduce the result of integration in (15) for the case of large ¢, ¢ > T, where
T is the pulse duration, i.e., for the case when the light pulse has gone
2/331/6 (2 _

Gutryp = TGl 10l (2, (19)
where I'(z) denotes the gamma-function.

Equation (19) describes the wave packet that moves away from the nucleus.
The shape of this packet coincides with that of the pulse envelope. With the help
of Eq. (19) the general expression (18) for the probability of ionization per pulse
w; can be further simplified. The substitution of the integration variable r by 7(r)
and, then, by ¢ gives

) 2/391/6 -7
wi:/_w%{l_% [2 3 Fis)/:o[t ()]]}’ (20)

where tg = 2wn3 is the Kepler period.
Finally, for a square pulse of a duration T' Eq. (20) yields

wi = I'T, (21)
where I' is the nonlinear rate of transitions
r=o- -7, (22)
where
92/3 1/6 r(z
_ PRI (e, (28)
w5s/3

and now ¢y = const. In the weak-field limit (¢ < w%3), Eq. (22) yields the
Fermi-golden-rule rate of ionization
3/3r

o = e I (3, cos 0] i), 24
where Y}, are spherical functions, { and I’ denote the electron angular momentum
in the initial and final states m is z-projection of the angular momentum, and
the factor [(Yirm |cos 8] Yi,m)|? is added to the expression following from Egs. (22)
and (23) to take into account the electron angular motion. In the case of a strong
field, gp > w%/3, the angular motion of a Rydberg electron can hardly be taken
into account rigorously in such a simple way. However, in the approximation of a
slow angular motion discussed in the beginning of Sec. 2 we can use the procedure
of Ref. [5]. In the framework of this procedure, in the expressions (22) and (23)
for the strong-field rate of ionization, the field strength amplitude € has to be
substituted by €o cos@ and the result has to be averaged over z = cosf to give

T'= %ﬁ [1 - /0 ldeg(gx)] : g | (25)

The characteristic time of ionization can be determined as the inverse double rate
of ionization
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ti=1/2' and §=1/2T (26)
for the case # = 0 and for the rate I" (25) averaged over 8, respectively.

3. Discussion

The dependence of the ionization rates and time of ionization on the field-
-strength parameter ¢ (23) is shown in Figs. 2 and 3 for the two above-discussed
cases: for § = 0 (Fig. 2) and for T (25) averaged over 8 (Fig. 3), the rates of
ionization and the time of ionization are measured in units of the inverse double
Kepler period and Kepler period, respectively. The pictures of Fig. 2 show that
for a given @, both the rate and time of ionization are oscillating functions of the -
field-strength amplitude eg. This result agrees with and specifies the qualitative
prediction of Ref. [5]. By comparing the results of the present theory with those of
Refs. [1-4], we can make an assumption that, possibly, the oscillating dependencies
ti(eo) and I'(eq) arise when and because one does not use the rotating-wave and
pole approximations inherently present in the earlier theories [1-4]. The minima
of the oscillating curve ¢;(¢) and the maxima of the curve I'(¢) correspond to the

1 Jo®
(@

i x 2t 4

- - = - ]

4

Fig. 2. The zero-order Bessel function (a), the rate of ionization I" (b), and the time
of ionization # (c) vs. the field-strength parameter ¢ (23).
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positions of zeros of the zero-order Bessel function Jo({) shown for comparison
in Fig. 2a. The minimal time of ionization achieved at these points is equal to
one Kepler period tx and the corresponding maximal rate of ionization is equal
to 1/(2tx). This means that the strong-field stabilization in Rydberg atoms has
to occur if the pulse duration is less or of the order of the Kepler period, in
accordance with the main ideas of Refs. [3, 4]. In agreement with Refs. [3, 4],
the “death-plateau” rather than the “death-valley” behavior of the curve #(go)
is confirmed: in the strong-field limit the function #;(¢¢) saturates at the level tx
rather than grows unlimitedly.

The curves of Fig. 3 show that the above-discussed oscillations appear to be
smoothed out when the electron angular motion is taken into account, though in
the framework of a very rough and approximate procedure of averaging over 6.
This result can be interpreted as an indication that the 3D structure of an atom
can result in a well pronounced “death-plateau” structure of the dependence ti(eo):
saturation in a strong field at the level tx without any oscillations or growth. This
conclusion agrees with that of Refs. [3, 4] though the methods of analysis in these
papers were absolutely different from that of the present one.

At last, it should be mentioned that, in the case of rectangular pulses, the de-
rived probability of ionization per pulse (21) depends linearly on the pulse duration
T, though this is not the lowest order perturbation theory and the rate of ioniza-

F, x 21,:4‘
1 _______________________
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0 1 c;
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R S e g g
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~ Fig. 3. The rate of ionization averaged over 4, T; (a) and the corresponding “average”
time of ionization % = 1/(2Ii) (b) vs. ¢ (23).
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tion I' (22) is not a linear function of €3. The linear dependence of the ionization
probability w; on the pulse duration T' means that the suggested theory cannot
describe the regime of depletion of the initially populated Rydberg state. Equa-
tion (21) assumes that the results derived are valid only if I'T' < 1, i.e., only for
short pulses. In the strong-field case, when I' ~ 1/¢k, this limitation yields ¢ < tx,
i.e., the pulse duration has to be shorter than the Kepler period. These restrictions
are explained by the used approximations in which the quasi-classical momentum
Pn(r) (4) was expanded in powers of r|E,| < 1 (8) and the squared derivative
of the functions o4 (r,t) was dropped in Eq. (9). Unfortunately, these approxima-
tions are crucially important for the found above rather simple solutions of the
Schrodinger equation (13)-(15) to be valid. Construction of a theory free from the
discussed approximations can be very interesting but also much more complicated
than in the case considered here. Another equally important but, probably, equally
difficult direction of future investigations has to include attempts to consider more
rigorously the electron angular motion. We hope to return to these problems later.
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