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High-field ionization suppression in a classical Kepler ensemble is dis-
cussed in terms of optimization with respect to pulse turn-on rate as well as
pre-pulse preparation. It is argued that high-field ionization suppression is
best understood in terms of reduced probability of ionization for pulsed fields,
whereas for a quasi-steady field, high-field ionization suppression implies a
reduced ionization rate at higher intensities. The classical ensemble is used
to calculate the high-field ionization rate of a one-dimensional atomic model
using a Gaussian short-range potential and the results are compared with
high-frequency Floquet theory results recently reported by other authors.
Better than qualitative agreement is found and. the results are compared
and discussed in terms of quantum superposition and classical interference.
Finally, high-field ionization suppression is discussed in relation to statistical
relative stability of classical orbits of the ensemble, and classical interference
for both short- and long-range potentials. Correspondence with quantum
superposition is interpreted in relation to quantum-classical correspondence.
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1. Introduction

The possibility of atomic stabilization in an intense optical field has been an
area of active theoretical research in recent years [1, 2]. Both quantum and classical
approaches have been taken, using many different model atomic potentials. We and

.our collaborators have studied several classical-ensemble models for intense-field
stabilization and the correspondence between their results and those of quantum
treatments [3-10]. This report is a synopsis of our most recent results [7-10].

Seemingly contradictory results can be found in the literature [2], and there
is not universal agreement that the phenomenon of atomic stabilization in an in-
tense laser field even exists. Also, those who do feel that the evidence supports its
existence are not always in agreement on the conditions for its manifestation. We
have attempted to clarify this situation in our recent work. Part of the disagree-
ment stems from a potential ambiguity in the meaning of “stabilization”. Some
authors interpret it strictly, so that it refers to an ionization probability that is
less than unity or that decreases with increasing field; in this strict interpreta-
tion, it is inappropriate to describe a decreasing ionization rate as stabilization,
unless.the rate decreases to zero. Many other authors, . however, would prefer to
state that any reduction in ionization rate makes the atom more stable. To avoid
this possible ambiguity, we will use the term “high-field ionization suppression”
(HFIS); this term can refer to either a reduced ionization rate or a probability of

"ionization that is less than unity. The interpretation of HFIS as a reduced rate of
ionization makes sense if the field is in a quasi-steady state (changing no faster
than adiabatically); this is because the ionization rate I'(avg) is determined by the
field strength (ao = A/w?, where A is the field amplitude and w is its frequency).
Only when the field has a finite duration, as in the case of a pulse (ap(t)), is
the interpretation as a reduced ionization probability meaningful, and then the
probability of ionization is given by

P=1—exp {—/F[ao(t)]dt} , | | -

where the ionization rate I” is integrated over the pulse duration.

Most of the apparent contradictions in the literature can be resolved by tak-
ing care in making comparisons, as there are many parameters whose variation
can lead to qualitatively different results. For example, in considering ionization
rates, one must ask how the atom is excited to a quasi-steady state [6, 7, 11, 12].
In the case of pulsed fields, the probability of ionization depends very much on the
pulse shape, particularly on how the pulse turns on (ramp-up); ionization is most
likely to happen during ramp-up [7, 8]. One must also consider the range of the
potential [6, 9, 10] and its dimensionality. The angular momentum of the initial
state is important, as is the field frequency relative to the binding energy. One
must also be careful in using a criterion to define when ionization occurs. In spite
of the great diversity of results reported in the literature, quantum-classical corre-
spondence [10] indicates that the various theoretical methods predicting HFIS [2]
may actually have more in common than previously thought.

In"the next section, we present a treatment of HFIS as a classical Kepler
problem and emphasize how HFIS can be enhanced by proper tailoring of the field
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pulse. The reduction of ionization rate in a short-range potential is presented in
- Sec. 3. Section 4 contains a discussion of the classical interpretation of HFIS in
terms of statistical relative stability of orbits, and we conclude with a discussion
of our results and quantum-classical correspondence in Sec. 5.

2. Classical Kepler ensemble
We use the Kepler model to write the classical equations of motion for atomic
hydrogen in cylindrical coordinates (p, z) and atomic units (¢ = me = A = 1):

&p v m?

= o + = ek (2)
d%z ov .
E =5 + n(t)Asin(wt), (3)

where V(p, z) = —1/r = —1/(p? + 2%)1/2 is the potential function and m is the az-
imuthal angular momentum. The external field e(¢) = n(t)A4 sin(wt) is specified by
the maximum amplitude A and frequency w, and it takes the form of a trapezmdal
pulse whose envelope is given by
t/TO) OStSTO) ..
(T+To-1)/To, T<t<T+To.
The ramp slope, R, defined by
A ,
R=—, 5
- 6)
is an important parameter. We solve Egs. (2) and (3), using w = 1 and m = 0.75.
The roles played by w and m were discussed earlier [6, 7]. We fix the length of
the pulse plateau, T' — Ty, at 30 optical periods. The initial conditions determine
whether or not a particle will be ionized; we take a distribution of initial conditions
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Fig. 1. Ionization probability P versus the number of particles in the ensemble N.
A pre-pulse (described in the text) is seen to reduce P from 0.44 to 0.34.
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consistent with r = (22 + p?)1/2 = 1, where p < 0.75, and a total (ground state)
energy of E = —0.5. A particle is considered to have ionized if it has a positive
total energy at the end of the pulse.

A discussion of the process of ionization will be given in Sec. 4. Here we
present some results showing how to enhance HFIS by tailoring the shape of the
pulse. We use an ensemble of 200 members; Fig. 1 shows this to be sufficient.
In Fig. 1, the probability of ionization (fraction of the ensemble that ionizes) is
shown as a function of ensemble size for the case of A = 8, R = 2. Also shown
in this figure is the enhancement of HFIS that results from preceding the main
pulse with a small trapezoidal prepulse with A = 0.5, Ty = 0.25 periods, and
T — Ty = 1.5 periods — the effect of the prepulse is to move the electron to a
larger orbit, making it less likely for the electron to pass near the nucleus during
the critical ramp-up phase of the field. We have found that most ionizations take
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Fig. 2. Probability of ionization during ramp-up, as a function of ramp rate, for
m = 0.75.
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Fig. 3. Percent ionization P versus field amplitude A. Open squares represent a fixed
turn-on slope R = 2. Open circles represent a fixed turn-on time of 4 periods. Tonization
returns to 100% in the latter case because the slope R becomes very steep as A increases.
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place during ramp-up, and that the ramp rate R is critical: too slow, and the
electron spends too much time in the “death valley” region, of highest ionization
rate, around A = 2 [13]; too fast, and the electron can be subject to a high field
whlle still close to the nucleus. We have shown R = 2 to be the optimal value,
producing the least ionization [7]. This is illustrated in Figs. 2 and 3. Shown in
Fig. 2 is the probability of ionization during ramp-up vs. ramp-up rate for three
values of A larger than the “death valley” value of A = 2, clearly demonstrating an
optimum turn-on rate of R = 2. In Fig. 3, the percent ionization (for a pulse with
no pre-pulse) is given for different values of A, both for constant Tp = 4 (periods)
and for constant R = 2. Some apparently contradictory results in the literature
are probably a result of these two different choices.

3. Classical HFIS in a short-range potential

A recent paper [14] calculates high-constant-field ionization rates using the
approximate solution to the Schrédinger equation given by high-frequency Flo-
quet theory (HFFT). The (short-range) potential used is a Gaussian well with one
bound state, as treated in previous quantum calculations [15, 16]. An interesting
feature of the results, for sufficiently large fields, is that the ionization rate de-
creases non-monotonically with increasing field strength. (This behavior has also
been found in a long-range potential, the one-dimensional soft Coulomb poten-
tial [17].) The same results can be obtained by a classical calculation [10], and the
agreement with quantum methods is better than merely qualitative.

The results of Ref. [14] are found by an adiabatic quantum method and
represent HFIS in a short-range potential. Field-atom interaction in the HFFT
may be thought of as a perturbation to the steady-state Kramers—Henneberger
(K-H) potential [1, 2], which is the time average, in the infinite-frequency limit,
of the potential V(u) given below. The ionization rate of interest is that of the
K-H ground state, which has been reached from the Gaussian well’s bound state by
adiabatic turn-on of the field. We wish to approximate this method classically, and
to do so we solve the classical equation of motion (in atomic units) for an electron
in a 1D potential V' and subject to a field of amplitude A and frequency w,

. ov

g =g A cos(wt), (6)
by making the transformation

A

U=z =~ cos(wt), (7
so that the equation of motion becomes

. av '
In Eq. (8), the potential to be considered here is

V(u) = —0.27 exp{~[u + g cos(wt)]%/4}, - (9)

where ag = A/w?. We take w = 0.236 a.u., as in Refs. [14-16]. We begln with a
large number of particles with a random, umform distribution of initial conditions
(u(0),4(0)), such that the initial energy of each is E(0) = —0.13, equal to that
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of the bound state of V for g = 0 [14]. This ensemble is meant to approximate,
in an average sense, the corresponding quantum state. The field is then ramped
linearly from zero to its final value at a constant rate, chosen to be slow enough
(e.g., dewo/dt = 0.5/optical period = 0.019 a.u.) that this process approximates
adiabatic evolution to the perturbed ground K-H eigenstate. The members of the
initial ensemble that survive the ramp-up of the field (remain unionized) then
constitute an ensemble approximating the perturbed K-H ground state. Finally,
while the field amplitude remains constant (hence constant cg), the decay of the
number of survivors is analyzed to find the ionization rate I'(ap); a particle is
considered to be ionized when the absolute value of its coordinate u becomes
greater than 4aq.
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Fig. 4. Ionization rate I" (in inverse optical periods) as a function of oscillation am-
plitude oo (= A/w?). A limited initial ensemble produces a very narrow distribution,
around the phase-space point u, @ = (—9,0.39), among survivors of the field ramp. The
field ramp-up rate is dag/dt = 0.5/optical period = 0.019 a.u., and w = 0.236 a.u. The
ionization distance is taken to be 4ayg.

Results of our classical calculation are shown in Fig. 4, where the ionization
rate I' (in inverse optical periods) is plotted as a function of op. Note that the
decrease in I' with increasing cg is not monotonic. The classical results are con-
sistent with the quantum results [14-16], which indicate a minimum lifetime of
approximately one optical period and an oscillatory decrease in rate. The precise
values of I' and shape of the I'" vs. g curve depend somewhat on the choice of
ramp slope and initial ensemble; these determine the ensemble that remains after
the end of the ramp. We limit the ensemble that survives the ramp to a distribu-
tion localized in phase space; but, qualitatively the results do not depend upon
the specific selection of members of the ensemble as long as they are sufficiently
clustered in the phase space.

The oscillatory behavior of I'(ao) can be understood classically as resulting
from the combination of the periodic field variation with the near-periodic return
of the electron to the vicinity of the nucleus where large momentum transfer can
take place to cause ionization [2]. The electron motion will be determined by ag
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and, because only a narrow range of initial conditions in the ensemble survives the
ideal adiabatic ramp-up, certain values of ap will make ionization more likely than.
others due to the resulting coincidence between electron return and high field.

The fact that we find suppression of ionization in a short-range potential
does not contradict our earlier results [6], despite our claim therein that there is
no stabilization due to interference suppression (in the sense of Fedorov [18-20]) '
in short-range potentials. That conclusion was based on the fact that short-range
potentials have only a finite number of bound states, thus limiting the number
of states that can interfere effectively; the result is that the probability of ion-
ization by a pulse goes to unity at high fields in short-range potentials. Careful
distinction must be made between probability of ionization and rate of ioniza-
tion; the apparent absence of stabilization (no reduced ionization probability) in.
short-range potentials is simply due to a quantitative difference in the integrated
ionization rates (see Eq. (1)), compared to those for long-range potentials. There
is no qualitative difference between long-range and short-range potentials as far as
ionization suppression (reduction of ionization rates) is concerned. By comparing
I'(ayg) for a short-range and a Coulomb potential [9], we find that under identical
pulsed-field conditions which result in only ~ 63% ionization for the long-range
potential, there will be > 99% ionization for the short-range potential. This means
that our earlier conclusion of minimal stabilization in a short-range potential is,
- in fact, consistent with these results showing an ionization rate that decreases
with increasing field, because the decrease is significantly slower than that for a
long-range potential [9, 14, 21].

4, Statistical relative stability of classical orbits

We study the stability of orbits (solutions to Eqs. (2) and (3)) within the time
domain during the turn-on, 0 < ¢o < Tp. A difficulty in analyzing stability is that
the field, £(2,), is the dominant term in Eqs. (2) and (3) for larger A; thus stability -
at any instant does not necessarily imply stability at later times. A point to note
here is that the stability equations (10)~(14), given below, do not involve the
field amplitude A explicitly. Therefore, what we find is the instantaneous stability
condition of the orbits in the absence of an external field. Here, we take an approach
somewhat modified from the conventional one, and define an ionization point (IP)
to be that point for an orbit that ionizes within 0 < #y < 7o for which the
p-component of the force acting on the particle is maximum. For the overwhelming
majority of cases, the IP corresponds to the point of closest approach to the nucleus,
after which the particle’s p coordinate increases monotonically. An example is
shown in Fig. 5.

The IP, defined this way with respect to the p coordinate, is an expression
of the fact that for the ensemble represented here, i.e., for sufficiently large az-
imuthal angular momentum, the condition for ionization resides almost entirely
with respect to the dynamics associated with p. This can be made plausible by
examination of Egs. (2) and (3). A particle of the ensemble is first accelerated
along the z direction in a strong field, then accelerated back toward the nucleus
after having reached the z turning point at |z| = ao. When the particle reaches
the azimuthal plane it is experiencing an acceleration along the p direction at the
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Optical Cycles

Fig. 5. Field &(t) and coordinates (p,z) as functions of time for a member of the
ensemble that does not survive ramp-up. Here A = 10, m = 0.75, and R = 2. -

same time that the z-component of acceleration is small or zero. If the centrifugal
term is larger than the Coulomb attraction, the particle will experience an accel-
eration along the p direction, away from the nucleus. This acceleration is larger,
the smaller the p coordinate, corresponding to the closest approach to the nucleus.
We find this to be overwhelmingly the case for the dynamics corresponding to our
ensemble. We define a critical point (CP) for an orbit that remains bounded in
0 < to < Tp using the identical criterion, the maximum p-component of the force
acting on the particle. These definitions enable consistent statistical comparison
of the relative stability of ionization points and critical points.

Thus we examine the behavior of p = p(to) + 6p and z = z(to) + 6z at an
IP or CP, and analyze statistically the relative stability of the points, IP and CP,
using the ansatz 6p ~ exp (iwgt), 6z ~ exp (iwgt). Equations (2) and (3) become

d2ép 02V 6%V 3m? ‘
X = 9|, e ), P | (10)
d26z 0%V %

@ = 7|, e (1

where |o indicates eva.luatlon at po = (to) and zo = z(tg). The stability eigenvalue,
w, is determined by

O—Bw0+C-—0, (12)
where '
VI .
b=y 2, | (13)
V" 3m? 22 '
o= -2 (g s wng). (19)

An orbit is unstable at the IP if the stability eigenvalue w? is negative or complex.
In our study of many potentials with different parameters and initial conditions,
all IP have values of w§ < 0 (i.e., C < 0 when the negative sign of the solution
of Eq. (12) is taken). The values of B and C are found by using the potential
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V(r) = —(1/r)exp[—a(r — 1)]. The reason for using this particular functional
form is to make a fair comparison between short-range potentials (a > 0) and the
long-range Coulomb potential (o = 0); in both cases we use the same ensemble of
200 sets of initial conditions, and at » = 1 the kinetic and potential energy will be
the same for both types of potential.
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Fig. 6. Number, AN, of particles (out of 200) that reach ionization points per one-tenth
optical period versus time (solid line); field envelope and plateau value A (dotted line).
Graphs (2) and (b) are for short-range (@ = 0.2) and long-range (o = 0) potentials,
respectively, with a four-period ramp-up and A = 8. Graph (c) represents a one-period
ramp-up with A = 2 for the long-range potential.

We consider the probability P of ionization by a pulse with 7' — 75 = 30
optical periods and R = 2; we find that a small reduction of the range of the
potential can destroy HFIS. For the long-range potential, P decreases with in-
creasing A, even though the field amplitude ramps up through the “death valley”
(where A has a value around 1 or 2) at the same rate for all 4, because of the
decreasing ionization rate in the plateau region of the pulse. For the short-range
potential, P never decreases because there is essentially complete ionization on the
ramp-up. This is illustrated in Fig. 6a, where the number of ensemble members
reaching an IP in each 0.1-optical-period interval (proportional to the product of
the ionization rate and the number remaining unionized) is plotted as a function
of time for a fixed value of A. For the Coulomb potential, it can be seen from
Figs. 6b and ¢ that approximately the same amount of ionization (about 50% of
the particles) occurs on the ramp-up, whether to A =2 or to A = 8. At larger
plateau values of A, once the particle survives passage through “death valley” we
obs: ‘ve that its orbit becomes so large that its motion is controlled by the external
field, and it is virtually immune from the atomic force; ionization in the ensemble
becomes negligible, as in Fig. 6b. On the other hand, A = 2 can produce complete -
ionization (P = 1) because the orbits remain closer to the nucleus, resulting in a
larger |wg| (Eq. (12)); hence consistently unstable orbits arise and continued ion-
ization occurs in the ensemble. Although the pulses are completed, and ionization
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Fig. 7. Energy input AE, as measured at the ionization point or critical point, versus
log,o(|w3]) for (2) long-range (o = 0) and (b) short-range (o = 0.3) potentials. Solid
squares (m) represent ionized particles and hollow squares (Q) are survivors.

determined afterward, Fig. 6 does not show the ramp-down; as we pointed out
earlier [6], ionization during pulse turn-off is negligible. We now understand this
to be a result of the orbits not having time to return close to the nucleus before
the field passes through the region around A a2 1—2. It is evident statistically that
the size of |w2| can indicate a measure of instability and likelihood of ionization,
despite the obvious limitations of the method. The application of the method in
“the case of a short-range potential demonstrates its utility; for A = 8, there is
complete ionization, in contrast to the Coulomb case. We can see from Fig. 6 that
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the reason for this is that the ionization rate, for a given value of field amplitude
on the ramp-up, is significantly larger for the short-range potential. The analysis
of stability explains this, as is illustrated in Fig. 7. Each point in Figs. 7a and b
reflects the state at an IP or CP. The overwhelming majority of orbits that ionize
have larger |w2| at that point than orbits that do not ionize. Another minor indi-
cator of stability is AE, the energy input, i.e., the difference between the particle’s
energy at the IP or CP and its energy at ¢t = 0. A very large AE pumps the orbit
to ionization even when the particle is located far away from the nucleus and |w3|
is small. A comparison of parts (a) and (b) of Fig. 7 shows that as « increases and
the range of the potential becomes shorter, both |w2| and AE are pushed toward
larger values, enhancing the ionization.

Equations (12) and (14) explain why |wg| can serve the purpose of predicting
ionization. For C to be negative at an IP, the value of the coordinate pp should
be small or zg should be large. A small po implies a large azimuthal angular speed
6o from 6y = m/pd. A larger 6, coupled with a short-range force of diminishing
influence over the orbits moving away from the nucleus, causes ionization, as
expected. This same physical picture is also applicable to explain the presence of
HFIS for the Coulomb potential. In this case, when the plateau amplitude. of the
field pulse is at A = 2 (near the “death valley” region of high ionization rate), those
particles not ionized in their first pass at small py can try again, whereas at A = 8§,
the orbits escape safely to a larger p (smaller |w?|), where they stay as relatively
more stable orbits. Our extensive numerical investigation, however, demonstrates
that all orbits are unstable throughout most of their dynamical history. This is
an important point. We have examined many pairs of orbits, originating from two
very close initial conditions resulting in only slightly different 6y or |w2|, in which
one ionizes and one remains bound after reaching the IP or CP. This explains
why ionized and unionized orbits cannot be clearly distinguished in a simple way
based on the initial conditions, much as the initial conditions determine regular or
chaotic behavior in the model of Ref. [22].

Our explanation of the importance of [wj| in producing ionization, as shown
in Figs. 7a and b, is a statistical statement. There are obviously a number of
exceptions because of other factors that contribute to the probability of ionization
at an IP or CP: the position coordinate zg, which determines AF; the time, which .
determines the phase of the field at the IP or CP; and the direction of the particle’s
velocity there. These minor factors are difficult to correlate to form a cohesive
deterministic picture. We account for them through their distribution over the
ensemble, giving us a statistical interpretation.

5. Conclusions

The role of the ramp-up of the external field in HFIS was analyzed. The
realization of an optimum turn-on rate, R, provides an essential clue to the ex-
planation of HFIS using the classical ensemble. The results have led to the use of
a weak prepulse to enhance HFIS, and suggest the expediency to implement an
optimization procedure within suitable constraints.

We point out the need to distinguish between two different interpretations
of HFIS. One interpretation, applicable to the case of pulsed fields, is that HFIS
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is a reduction in the probability of ionization with increasing pulse intensity. The
other, for quasi-steady fields, is that HFIS is a reduction in the ionization rate
with increasing field amplitude. The major features in either case are that high
field amplitudes induce less ionization, and that ionization is more likely for a
particle bound in a short-range potential. We show that these features may be
explained in terms of a classical dynamical ensemble. We show that orbits in
general are characterized by a stability eigenvalue (w3) that is a good indicator of
whether ionization will occur. Our results show that there exist points (IP and CP)
in configuration space at which the particle experiences an impulse; a short-range
potential is more likely than a long-range potential to lose its grip on the particle at
the IP or CP, meaning that ionization is more likely in the short-range case. This
means that at any value of field amplitude, the ionization rate will be larger for a
short-range potential than for a long-range potential; this quantitative difference in
instantaneous rates, acting over the duration of a pulse, can result in a qualitative
difference in the resultant ionization probabilities.

The question as to just why the classical model gives results equivalent to
those of the quantum approach, even for a short-range potential, merits further
investigation. In earlier work [6], we suggested that the classical-quantum equiv-
alence for a long-range potential derived from the importance of interference and
coherent superpositions of many quantum bound states out of the infinite number
available [18-20]. For the short-range potential, our preliminary suspicion is that
interference is again responsible, although it is less effective because the number
of the bound states of the potential, and therefore the number of K-H eigenstates
for finite «yg, is finite. Evidence pointing to interference can be found in Ref. [14],
where the initial decline in the ground-state ionization rate begins shortly after the
appearance of the first light-induced excited state. Further evidence for the role
of interference between K-H eigenstates may be found in the existence (absence)
of ionization suppression for a one-dimensional (three-dimensional) delta-function
potential [2, 23-25]. An explanation for this behavior of delta-function potentials
may be found by applying the method used in Ref. [6], for estimating the number
of bound states, to the corresponding time-averaged (K-H) potentials. It is found
that the number of bound states of the K-H potential derived from a one- (three-)
dimensional delta function goes to infinity (zero) as aq increases without limit —
in the three-dimensional case, there are no light-induced excited states to interfere.
For the Gaussian potential treated here, agreement with the quantum results also
suggests that the field-induced superposition of K-H eigenstates is not dominated
by nonclassical interferences, in which the Wigner quasi-probability distribution
takes on negative values [26]. Thus we suggest that these quantum-classical corre-
spondences point to interference as the mechanism underlying HFIS even in the
adiabatic limit. '

References

[1] J.H. Eberly, K.C. Kulander, Science 262, 1229 (1993).

[2] N.B. Delone, V.P. Krainov, Usp. Fiz. Nauk 165, 1295 (1995) [Phys. Usp. 38, 1247
(1995)].

(3] B. Ritchie, C.M. Bowden, C.C. Sung, Y.Q. Li, Phys. Rev. 4 41, 6114 (1990).



Quantum-Classical Correspondence . .. 43

(4] C.M. Bowden, C.C. Sung, S.D. Pethel, A.B. Ritchie, Phys. Rev. A 46, 592 (1992).
(5] C.M. Bowden, S.D. Pethel, C.C. Sung, J.C. Englund, Phys. Rev. 4 46, 597 (1992).
[6] M. Dombrowski, A.T. Rosenberger, C.C. Sung, Phys. Lett. A 199, 204 (1995).

[7] C.C. Sung, A.T. Rosehberger, S.D. Pethel, C.M. Bowden, in: Super-Intense
Laser-Atom Physics IV, Eds. H.G. Muller, M.V. Fedorov, Kluwer Academic Pub-
lishers, Dordrecht 1996, p. 73.

[8] S.D. Pethel, C.M. Bowden, C. C. Sung, Laser Phys. 7, 558 (1997).

[9] A.T. Rosenberger, C.C. Sung, S.D. Pethel, C.M. Bowden, Laser Phys. 7, 563
(1997).

{10] A.T. Rosenberger, C.C. Sung, S.D. Pethel, C.M. Bowden, Phys. Rev. A, to be
published. .

[11] T. Grochmalicki, M. Lewenstein, K. Rzazewski, Phys. Rev. Lett. 66, 1038 (1991).
[12] K.C. Kulander, K.J. Schafer, J.L. Krause, Phys. Rev. Lett. 66, 1038 (1991).
[13] F. Benvenuto, G. Casati, D.L. Shepelyansky, Phys. Rev. A 45, R7670 (1992).
[14] M. Marinescu, M. Gavrila, Phys. Rev. A 53, 2513 (1996).

[15] G. Yao, S.-I. Chu, Phys. Rev. A 45,6735 (1992).

[16] A. Fearnside, R.M. Potvliege, R. Shakeshaft, Phys. Rev. A 51, 1471 (1995).
[17] T. Millack, J. Phys. B 26, 4777 (1993).

[18] M.V. Fedorov, A.M. Movsesian, J. Opt. Soc. Am. B 6, 928 (1989).

[19] M.V, Fedorov, A.M. Movsesian, J. Opt. Soc. Am. B 6, 1504 (1989).

[20] M.V. Fedorov, Comments At. Mol. Phys. 27, 203 (1992).

[21] M. Pont, M. Gavrila, Phys. Rev. Lett. 65, 2362 (1990).

[22] F. Benvenuto, G. Casati, D.L. Shepelyansky, Z. Phys. B 9, 481 (1994).

[23] S. Geltman, Phys. Rev. A 45, 5293 (1992).

[24] V.P. Krainov, M.A. Preobrazhenskii, Zh. Eksp. Teor. Fiz. 103, 1143 (1993) [Sov.
Phys. JETP 76, 559 (1993)].

[25] H.R. Reiss, J. Opt. Soc. Am. B 13, 355 (1996).

[26] J.B. Watson, C.H. Keitel, P.L. Knight, K. Burnett, Phys. Rev. A 52, 4023 (1995).



