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ON NUMBER OF EXCITON SURFACE STATES
IN MULTILAYER MOLECULAR SLABS

NGUYEN BA AN*

International Center for Theoretical Physics
P.O. Box 586, 34100 Trieste, Italy

(Received July 21, 1997; in final form September 25' 1997)

Criteria for the possible number of exciton surface states in a multi-
layer molecular slab are elucidated in detail. Namely, we explicitly determine
the domains of system parameters where the size dependence plays a role.
We further clarify the way a surface state is localized in the slab in both
asymmetric and symmetric configurations. Basing on our results which are
obtained within the first nearest layer approximation, we also conjecture
properties to be expected when further nearest layers are taken into consid-
eration.

PACS numbers: 71.35.Αa, 73.20.At, 73.20.Dx

1. Introduction

	Practical optoelectronic devices are based on characteristics of both light 	'
and material. For the material, semiconductor low-dimensional crystals have been
widely used in which the Wannier—Mótt excitons are the key figures giving rise to
fast responses and room-temperature operations [1]. Recently, by novel techniques
of organic 'molecular beam deposition, organic molecular superlattices [2] and pe-
riodic assemblies of quantum dots [3] have successfully been produced.. This has
motivated the study of the physics and the possible applications of heterostruc-
ture-based molecular crystals in which the electronic transitions are mainly due
to the Frenkel excitons (see, e.g., [4-6] and references therein). Theoretical in-
vestigations of unique properties of future composite organic-inorganic quantum
structures, where the Wannier-Mott and the Frenkel excitons hybridize, have just
been started [7-9]. 	'

One type of the available heterostructure-based molecular systems is mul-
tilayer molecular slabs which have currently attracted a lot of interest [10-12].
Reference [10] evaluated the superradiance rate neglecting interaction between
the layers. In Refs. [11] and [12] the authors calculated the internal field and the
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third-order susceptibility taking into account the interlayer coupling but ignoring
distortion of the wave function near the interfaces separating the slab region from
the regions of the surrounding materials. Since the primarily necessary knowledge
for any calculation of the optical responses is the knowledge about the material
system, a thorough study of the electronic structure of the material system de-
serves its own significance. If simple unrealistic "noescape" boundary conditions
like in Refs. [11] and [12] are imposed, there arises only one kind of eigenstates,
the propagating states (or the bulk states). In reality, due to finite size, each layer
feels different sets of neighbors and different distances from the two surrounding
materials which, in turn, may have different dielectric properties when compared
to each other as well as to the slab material. An accurate account of the real
boundary conditions at the slab interfaces is therefore necessary. Such kind of
work has been done, e.g., in [13] in which the possible number of exciton surface
states (from now on we just call surface states instead of exciton surface states for
short) is shown to depend not only on the conditions at the slab interfaces but
also on the slab thickness. In this work we go into more detail in the sense that we
explicitly indicate the domains of system parameters where the size dependence is
important. Outside those domains the surface state number is determined solely
by the boundary conditions, not by the thickness. When a surface state exists, a
question is to which of the two interfaces is it localized? And, when there appears
more than one surface state, what is the degree of localization of each of these
states? Answering these questions is also a part of the present work.

2. size dependence versus surface-to-buIk ratios
The Hamiltonian of an N-layer molecular slab can be written in terms of

coupled inlayer excitons as (Here we consider N > 3. The special cases of N = 1, 2
when all layers are surface ones were studied in Γ141.)

where n, n' run from 1 to N, bn (bt) are the operators for the n-th layer exciton
with energy Ε. (Note that Εn differ from layer to layer and are not equali to each
other as oversimplified in Refs. [11] and [12]. This feature is essential in giving
rise to the appearance of surface states.) Rn,n' measures the interaction between
layers n and n'. Both En and Rnn ' can be calculated taking into account both the
dipolar interaction by a planewise method [15, 6] and the abrupt change of media
at the interfaces by the method of image charges [16]. Obviously, E n and Rnn'
are determined by properties of the whole system: the slab plus the surrounding
materials. We shall refer to them as the system parameters. Because the inter-
layer interaction holds for all the layers together in the slab, it does not seem a
good approximation to fully neglect it as was done in Ref. [10]. Nevertheless, as a
well-known fact [15, 6], Rn,n' falls off very quickly against |n - n' ^ so that one can
limit oneself to the interaction within a few numbers of nearest layers only. If the
1st (2nd, 3rd, .. , L-th (L « N)) nearest layers are taken into consideration, the
approximation is called the 1st (2nd, 3rd, ... , L-th) nearest layer approximation
and abbreviated as 1NLA (2NLA, 3NLΑ, ..., LNLA).
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In the LNLA there are 2L outermost special layers with different energies
Ε1, Ε2, . . ., ΕL, EN-L, EN-L+1, . . . , ΕN-1, EN and N - 2L internal layers with
equal energy Ε = EL+1 = ΕL+2 = . . . = ΕN-L-2 = EN-L-1. The N eigen-
functions Ψv and N eigenenergies ωv (v = 1, 2, ... , N) satisfying the Schrödinger
equation

can be determined by representing Ψ„ as

which is justified by the fact that |Rnn',|  are much smaller than Ε in most realistic
systems. The coefficients gvnandωvare then to be found from 2L + 1 difference
equations which are obtained upon the substitution of Eq. (3) into (2). It can
be shown that the slab eigenstates can be classified into bulk states, which hop
from layer to layer throughout the whole slab region, and surface states, which
are localized near some outer layers of the slab. For definiteness let us present
our results using the 1NLA since in many cases the 1NLA proves to be sufficient.
Later we shall discuss on the LNLA briefly.

In the 1NLA there are 3 difference equations to be solved

where Ε = Ε2 = Ε3 = ... = ΕΝ-1 and R = Rn,n' =n+Ι. The solution to Eq. (4)
can be found in the form [131

where {ki} = {k 1 , k2, ..., ks}, 1 equals either 1 or 2 and {qj} = {q1 , q2, . . ., q -).
Note, here and hereafter ki, qj are treated in units of the layer spacing and thus
are dimensionless. The coefficients in Eq. (5), which satisfy the normalization con-
dition, are given by
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with

As Ε - Ε1,N characterize the conditions at the slab interfaces while R the bulk
interaction, we conventionally call |D1,N | the surface-tobulk ratios. Clearly, there
are s surface states and N — s bulk states. The value of 1 and s valnes of ki are to
be determined from the transcendental equation

Analyzing Eqs. (7) and (8) leads to the result that s may be 0, 1 or 2 depending
on the relation between D1, DN and N. The criteria for the possible number of
surface states are as follows [13]:

The noticeable message coming from Eq. (9) is that the number of surface states
depends not on D 1 and DN separately but rather on their combinations ‚D 1 + DN|
and D 1 - DNS expressing the physical fact that the two interfaces are related
or, in other words, they are interacted or correlated. And, moreover, there is a
dependence on the slab thickness through N. The size dependence is significant
especially in mesoscopic slabs because the number of surface states as well as
other electronic properties could be tailor-made by changing the slab thickness
but keeping the same surrounding media. From Eq. (9) one may think that the
size dependence always goes together with the dependence on the surface-tobulk
ratios. However, we shall prove that the size dependence plays its role only in
certain domains of the system parameters. Outside those domains there are no
size dependences at all. Let us formulate this by a sequence of statements.

Statement 1: If both the surface-tobulk ratios are less than or equal to 1,
i.e.,

then there are always no surface states for an arbitrary slab thickness.
Statement 2: If one of the surface-tobulk ratios is less than or equal to 1

and the other is greater than 2, i.e.,
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then there is always one surface state for an arbitrary slab thickness.
Statement 3: If both the surface-tobulk ratios are greater than 2, i.e.,

then there are always two surface states for an arbitrary slab thickness.
Statement 4: If one of the surface-tobulk ratios is less than or equal to 1

and the other is greater than 1 but less than or equal to 2, i.e.,

then there may be zero or one surface state depending on the slab thickness.
Statement 5: If one of the surface-tobulk ratios is greater than 2 and the

other is greater than 1 but less than or equal to 2, i.e.,

then there may be one or two surface states depending on the slab thickness.
Statement 6: If both the surface-tobulk ratios are greater than 1 but less

than or equal to 2, i.e.,

then there may be one or two surface states depending on the slab thickness.
Clearly, from the above statements, there is a fixed number of surface states

independent of N in the domains of the surface-tobulk ratios which lie outside
the interval between 1 and 2 (Statements 1, 2 and 3). Only when one (as in
Statements 4, 5) or both (as in Statement 6) of the ratios fall within that inter-
val, the size dependence shows up. The proofs of Statements 1 to 3 are given in
Appendix. Here illustrations are made for Statements 4 to 6. For Statement 4 let
us choose |D1| = 0.4 and |DN| = 1.05 (1.1). The numerical calculation shows that
there exists a crítical N = 19 (9) such that for N < N there are no surface
states whereas for N > N there is one surface state. The change of the surface
state number from one to zero when N crosses N while decreasing is physically
understood as follows. For large N (N > Ν) the two interfaces, being far from
each other, are almost independent. However, for small N (N < Ν) the interfaces
are relatively close to each other and become correlated. Their correlation results
in the suppression of the surface state which exists for large N. Statement 5 is elu-
cidated by choosing D1| = 2.1 and |DN| = 1.1 (1.2). A critical thickness appears
to be N = 12 (7). Now for N < N there is one surface state but for N > N^
the surface state number is two. The crossover at N = N of the surface state
number from two to one when N decreases is also explained by the interfaces cor-
relation in thin slabs which in this circumstance suppresses one of the two surface
states present in thick slabs. Finally, the size dependence underlying Statement 6
is qualitatively similar to that in Statement 5. The critical N 13 (11), say, for
D1| = 1.1 and |DN| = 1.5 (4.5). Note that the N-governed change of the surface

state number satisfies a "selection rule": Δs 0, ±1 because t m < tM under any
situation. Statements 1 to 6 presented above are general and, thus, contain as a
particular case the result of Ref. [17] where it was possible to analytically express
Nc as a function of |D| = |D1| = |DN |. Only Statements 1, 3 and 6 are needed for
the symmetric configuration used to draw Fig. 2 in [17].
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3. Ways in which surface states are localized
Having understood the possible surface state number which is determined

by the surface-tobulk ratios and size of the slab, we are now going to clarify the
way of localization of surface states. For this purpose we study the spatial profile

|gnl,k|2given in (5) for a surface state. First we consider the case of two surface
states. Take D1| = 2.5 and |DN| = 10. In accordance with Statement 3 there
exist, for such parameters, two surface states for any N. Let Ν = 20 and solve
Eq. (7) for (1, ki). The solutions are S1 = (di , k 1 ) = (1, —0.9163) for the first surface
state and s2 = (12, k2) = (1, -2.3026) for the second. The spatial profile is now
ready to be plotted. Figure 1 shows |gnl1,k1|2, which are big circles connected by

a dashed curve, and |gnl2,k2|2 , which are small circles connected by a solid curve,
as functions of n. Transparently, each surface state is separately localized near an
interface: |gnli,ki|2 are finite at n = 1 and n = 20 but fall off exponentially in the
bulk. However, the localization degree differs at n = 1 and n = N. From Fig. 1
it follows that the degree of localization is stronger (weaker) near the interface
whose surface-tobulk ratio is greater (smaller). If the surrounding material on
the left is replaced by another one that makes, say, |D1 < 1 (or 1 < |D1 | < 2),
then according to Statement 2 (Statement 5) one surface state always exists for
any N (may exist for N < Ν). Numerical calculations show that when there
is only one surface state this state is always localized near the interface with a
greater surface-tobulk ratio (see Fig. 2 and its caption). A question can be asked
at this point: to which interface is localized the only one existing surface state
when both the surface-tobulk ratios are equal like in a symmetric configuration?
When |D = |D1 |= |DN| the only one surface state may exist within the domain
1 < |D|, < 2 provided that N < N = (SD| + 1)/(|D| 1). Taking |D| = 1.4
we get N = 6. Thus, for N = 5 < 6 the only possible surface state has the
characteristics s = (1, k) = (1, -2.3026). Its spatial profile is sketched in Fig. 3.
For N = 10 > 6 (with the same 1.4) the number of surface states becomes
two: one has the characteristics s1 = (di, ki) = (1, -0.3565) and the other has
s2 = (12, k2) = (1, -0.3058). The ways these two surface states are localized are
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visualizable in Fig. 4 in which the circles connected by a dashed curve belong to
the state s1 and those connected by a solid curve to the state s2. From Figs. 3
and 4 it is evident that, no matter how many surface states exist, each of them is
equally localized near each of the two interfaces. That is, more explicitly speaking,
a surface state is half attaching to the left interface and half to the right one.
This feature appears reasonable as required by the symmetry of the configuration
concerned: the coefficient gmk, from a symmetry point of view, should be either a
symmetric or an antisymmetric function of n with respect to the slab center.

4. ConcIusion and discussion on further approximations

We have studied in detail the criteria determining the surface state number
in a multilayer molecular slab. The possible number of surface states depends on
the combination of conditions at both the interfaces which are in general cone-
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lated with each other. In small size slabs this interaction may lead to the size
dependence which is manifested in certain domains of the system parameters. If
the surface-to-bulk ratios are both too small (< 1) or one is too small but the other
large enough (> 2) or both large enough, then the number of surface states is fixed
to be zero or one or two, respectively, whatever is the slab thickness. Only when
one or both of the surface-to-bulk ratios is/are not too small and not large enough,
the size dependence plays its role. In this case, there is a critical thickness  N and
the surface state number is reduced by one for N < N as compared to that for
N > N. It is worth emphasizing that, as a consequence of the size dependence
versus the surface-to-bulk ratios, N is subject to the system parameters. That is,
slabs having the same thickness may possess different surface state numbers for
different conditions at the interfaces.

Naturally, the size dependence is of paramount importance in mesoscopic
heterostructures which are of great interest nowadays. In macroscopically sized
systems each interface contributes separately because their correlation is negligible.
This is easily obtained from our críteria in the limit N » 1 in which Eq. (9) reduces
to

where Dm| = min{|D 1 |, |DN|} and DM | = max{|D1| , |DN|}. We realize that sim-
ply |Dm | and DM enter Eq. (17), not their combinations |Dm ±DM| as in Eq. (9),
reflecting the physical fact that in macroscopic slabs the interaction between the
two interfaces is negligible and plays no role in determining the number of sur-
face states. In particular, if ‚Dm | = ‚DM|, i.e. D1 | = |DN |, as in the symmetric
configuration, Eq. (17) recovers the result of Ref. [18]. Our criteria (9) are there-
fore general: they apply to any size and boundary conditions. The salient merit of
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Eq. (9) is their validation in mesoscopic slabs like currently interested molecular
quantum wells consisting of from several to some tens layers in total.

In asymmetric slabs, if there are two surface states, each of them is localized
near an interface and the degree of localization is stronger at the interface which
has greater surface-to-bulk ratio. If only one surface state arises, it is localized near
the interface whose surface-to-bulk ratio is larger. In symmetric slabs the way of
localization differs. Surface states, if any, are always localized equally at each of
the two interfaces.

As to further approximations we could conjecture the following: a possible
number of surface states in an N-layer molecular slab within the. LNLA may be
0, 1, 2, ... , 2L - 1. and 2L depending both on combinations of the surface-to-bulk
ratios and on the total number of layers. Nevertheless, general analytical críteria
revealing dependences on both material parameter combinations and size are im-
mensely difficult to obtain. A recent work [19] has developed the 2NLΑ for the same
structure but restricted to the symmetric configuration of large size only. For such
a simplified model no size dependence and no possibilities of one and three surface
states could be derived although, as compared to the 1NLA, four surface states
and an additional type of surface state that evanesces as an exponent multiplied
by an oscillating amplitude have been pointed out in Ref. [19]. Understanding the
nature and the number of surface states as well as the relevant size dependence
in the finite size multilayer molecular slab is still a matter of intensive research
which is really actual since there have been available experiments [20] waiting for
theoretical explanations.
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Appendix
This appendix proves Statements 1, 2 and 3. All the proofs will go with the

assumption |D1 | > | DN | (the inverse situation | DN| > ‚D 1 | should proceed along
the same lines with the exchange 1 ↔ N to be made). Let φ = sgn(D1 DN ) = ±1
be the sign of the product D1 DN. Explicitly, in terms of φ, the quantities defined
in Eqs. (9) and (10) read
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Proof of Stαtement 1
A little algebra yields

The rhs has been grouped so that it is obviously non-positive by virtue of (11).
Then

The latter equality is again due to (11). We thus have

that implies no surface states at all. Statement 1 has been proved.

Proof of Stαtement 2
The same lhs can be manipulated into another form for the rhs, namely

The rhs has now been grouped in another way as compared to the grouping in the
Proof of Statement 1 so that it is obviously positive by virtue of (12). Then

The upper "plus" gives

while the lower "minus" gives

Now

is obviously negative as seen from its grouping when (12) is used. Then

The latter equality is due to the assumption |D 1 | > | DN| . The inequality is nothing
else but

We thus have for both φ = ±1

that implies one surface state. Statement 2 has been proved.
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Proof of Stαtement 3
When Eqs. (13) are satisfied, algebraic manipulations yield the following

groupings:

that lead to

and

that lead to

We thus have for both φ = ±1

that implies two surface states. Statement 3is proved.
As seen from the above proofs or, in general, from the criteria (9) containing

only |D1 f DN|, we note that the number of surface states is unaffected by the
relative signs of D 1 and DN. Note, however, that the energy level of a surface state
is sign-sensitive [13, 19].
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