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STOPPING AND STRAGGLING OF SLOW ATOMS
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New analytical formulas for the electronic stopping power and the en-
ergy loss straggling of low velocity heavy atoms in the degenerate electron
gas are calculated within the dielectric function method. The stopping and
straggling effective charges of a projectile were analyzed. They are found
to differ each other and to depend on the electron gas density r3, on the
projectile atomic number Ζi and on the projectile degree of ionization C.

PACS numbers: 71.45.Gm

1. Introduction
Since the probability for capture of electrons is high at low ion's velocity,

slow ions move or stop in matter almost completely neutralized. The knowledge
of the stopping power and energy loss straggling for this atoms are important in
analysis of distribution and lattice localization of implanted atoms or in analysis
of surface structure. The most important work in this field was done by Lindhard,
Winter and Sharff [1-3], Firsov [4] and Hvelplund [5]. A common feature of these
theories is the proportionality of the stopping power to the projectile velocity v and
the energy loss straggling to v 2 . The target and projectile dependences contained
in the proportionality factor are theory dependent and they are different. As far as
the author knows, a detailed derivation of the basic Lindhard-Sharff formula has
not been presented. Also rs dependence of the straggling has not been determined
analytically. In the present calculations stopping and straggling of low velocity
projctiles are treated in a unified manner, and in both cases analytical formulas
are found. In this paper m e , e, α0, v0, ħ are the electron rest mass, the elementary
charge, the Bohr radius, the Bohr velocity and the Planck constant divided by 2π,
respectively. Atomic units are used throughout.

2. Calculation procedure
The conduction electrons of a solid screen the quasi-static electric potential

of an atom due to dielectric response. A volume parameter of bound electron can
be determined statistically. Provided the speed of the atom is lower than the Fermi
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According to the density functional method when the ion moves in a solid
the total energy E can be expressed in terms of local electron density p'(r) as a
sum of the kinetic and the potential energies
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velocity VF, this screening can be approximately described in terms of the screened
Coulomb potentials between electrons Vee, and between electron and nucleus Vne
of the following form [6-9]:

where the Thomas—Fermi wave number k TF is related to the electron gas density n,
or to the one electron radius rs as kT F = 4kF/(πα0 ) and kF is the Fermi wave
number kF = (9π/4) 1 /3/(α0 rs ). The Zi is the projectile atomic number.

When an ion is isolated, the volume parameter A of the bound electrons
cloud on the atom is equal to the Brandt—Kitagawa [6] screening length Λ0 =

0.56α0/Ζi1 /3. In a solid this parameter is modified. In order to determineΛwe
assume stable static conditions. If N; electrons are bound to the ion (( = N /Ζ )
the density p'(r) can be described by Γ61

The probability of the energy transfer to a degenerate free electron gas from
a projectile is described within the random phase approximation by the dielec-
tric function «k,"). The electronic stopping cross section S and the straggling
parameter Ω2 (per free electron) for atoms of velocity v with the bound electron
distribution p'(r) are given as [1, 2, 9]

In the equations n and 'ή = (4πne2/me)1/2 = 3/r; denote the free elec-
tron density and the plasma frequency, respectively. The factor 4πe 4/(mv 2 ) =
4πe 2 α0(ο0/v) 2 . The form factor ρ(k) = f d3rp(r) exp(-ikr) = 1/[1+ (Лk)2] is the
Fourier transform of the spatial electron distribution of Eq. (2).



Stopping and Straggling of Slow Moms ... 	 1171

3. Results and discussion

We carried out calculations for ions moving slowly in the uniform electron
gas at rest. Analytical results have been derived for the stopping power and for
the energy loss straggling for the gas described by Lindhard's dielectric function
ε(u, z) = 1+(χ2 /z 2 )[fl (u, z)+if2 (u, z)] [1, 2] in terms of the dimensionless variables
z = k/(2kF), u = ω/(kvF) and χ2 = rs/[π(9π/4) 1 /3]. For low velocity ions the L 1
and L2 functions of Eq. (7) are expressed as

where ΕF = (9π/4)2/3/(2r2s). For f1(u,z) the following expansion f1 (0, z) = 1 -
z 2 /3 can be used. In this case the denominator in Eq. (8) reads [z 2 + χ 2 (1 —
z2/3)]2 = (χ2/χ'2)2(z2 + χ'2)2 where χ' 2 = χ 2/(1 — χ2/3). For real metals 1.5 <
rs < 5.8 therefore 

1
0.5 < χ < 0.98 and 0.52 < χ' < 1.19. In the following, in order

1o simplify notation, we will use the symbol χ2 instead of χ' 2 . In the calculations,
however, we use χ' 2 .
(1) For the bare atomic nucleus, when ζ = 0, from Eq. (8) we get

(2) For a neutral atom (ζ = 1), when the Fourier transform of the electron distri-
bution Eq. (2) is (yz) = 1/[1 + (yz) 2 ], where y = 2kFΛ we get

(3) For ions carrying N electrons ζ < 1 and using the Fourier transform of the
electron distribution in the form (yz) = ζ/[1 + (yz) 2 ], y = 2kFΛ, we get
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where the auxiliary functions are defined as

Everywhere above χ2 = 1/(α0πkF) = rs/[π(9π/4) 1 / 3] and y = 2kFΛ. The
formulas of Eqs. (13-14) are directly reduced to the cases of a bare atomic nucleus
and to the atom by setting ζ = 0 and ζ = 1, respectively. L1 is dimensionless
and L2 is expressed in atomic Hartree units. For a further analysis we denote the
expressions in square brackets of Eqs. (13-14) as C1 and C2.

The formulas of Eqs. (13-14) as can be expanded in a power series around
ζ = 1 to yield the first order in ζ corrections ΔLm to Lm(ς = 1) which describe
an atom

The functions L 1 and L2 of Eqs. (13-14) depend on y = 2ΛkF quadratically
around y = 0. In the first order of expansion we get L1 and L2 as in Eqs. (9-10),
respectively, but multiplied by (ζ - 1) 2 .

The common feature of the present and other results is that at low projectile
velocity the stopping power S is proportional to v and the energy loss 8traggling
Ω2 to v 2 . The differences are theory dependent and are related to the coefficient of
proportionality C(Ζi, rs , ζ) which incorporates both the target parameter rs and
the projectile parameters Ζ and ζ. They cannot be simply separated even after
a power expansion. The important point is that we have to consider a stable in
time, frozen charge distribution on the projectile. As was shown previously [10, 11]
the projectile charge in the Fourier space, which contribute to Eqs. (7-8) is a
sum of the screening component [1 - ζ (yz)] 2 and the antiscreening component
(ζ/Ζ ){1- [(yz)} 2 }. We deal here with Slow, heavy projectiles, so the considering
of the screening component only is justified.
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On analyzing Eq. (5) we find the dependence of the volume parameter Λ on
the electron gas density rs. If rs --> ∞ in the vacuum, then kTF - 0, (kF —> 0) .

and A —> Λ0 [6], as should be. Also Λ decreases with a degree of ionization as ς2/3
around ς = 1.

We have drawn results of calculations for C1 of Eq. (13) and C2 of Eq. (14)
in Figs. 1a,b and c,d, respectively, as functions of electron gas density rs and the
projectile atomic number Ζ for different degrees of ionization ς. We have found
that for dense electron gas (rs = 0.5) the stopping and straggling are almost
independent on ς and decrease slowly with Zi. For a low density (rs = 6) both
C-functions depend on ς very strongly. C's decrease with Ζi for a neutral projectile
(ς = 1), and are almost independent on Ζ (compare Eqs. (9-10)) for a bare atomic
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nucleus (ς = 0). It means that the proportionality of the stopping and straggling
to Ζ, , correct for a point charge, is broken in the case of extended charge, and the
projectile excites the medium as a stable charge configuration. The decrease in C's
with rs can be understood by noting that the energy absorbed by the electron gas
on collective excitations drops as r^  3/2 and the number of electrons subjected to
the single particles excitations are related to the density of states below the Fermi
energy EF .

For the energy loss analysis the concept of effective charge is applied [10, 11].
It relates stopping and straggling produced by a given projectile to the same char-
ac^teristics produced by the projectile atomic nucleus. We define the effective charge
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for the stopping Zef1 and for straggling Zef2 separately as

An independence Zef 's on Z; means that the Bethe Z; scaling is applied
for both stopping and straggling. This scaling is related to the same proportion
of close and distant collisions in the process of energy transfer to the electron
gas. In the static case the result Zef < 1 means that projectile electrons screen
the Coulomb potential of the projectile nucleus. However the antiscreening by
projectile electrons is neglected [11].

In Fig. 2 we have drawn both effective charges of a neutral (ζ = 1) and
half charged (ζ = 0.5) projectiles with different atomic numbers Ζi moving slowly
in electron gas of density rs. Again for dense electron gas the decrease in Ζef
with Zi is slow, and for dilute gas there is a rapid decrease in Ζef with Ζ. Also
both Zef go down with r, much faster for small Zi than for large ones. It means
that the stopping power and the energy loss straggling for the extended charge
projectile cannot be reduced to the corresponding functions for the proton and
some proportionality factor.

An interesting feature is that within the dielectric function method the ef-
fective charges extracted from the stopping data and from the straggling data
are different. As shown in Fig. 3 the straggling effective charge is larger than the
stopping effective charge. The relation Zef2 > Zef1 holds for all r„ Ζ , ζ. Moreover
the function Ζefm(ςι)/Ζefm(ς2)) is not constant, but depends on rs and Ζ. The
reason for that is the structure of the integral Eq. (8). It means that there is an
additional contribution to the straggling caused by an extended charge projectile.
The maximum of the ΔZef = Ζef2 — Zef1 function formS in the (r„ Ζ;) plane a
hyperbola.
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For reference we quote the results by Lindhard-Scharff as for the stopping
power and the results by Hvelplund as for the energy loss straggling,

where Ω2B = 4πΖ Ζ tNdx is the high velocity Bohr straggling, N is the density
of target atoms and Zt is the target atomic number. In order to compare these
formulas with the present results we should multiply Eqs. (13-14) by a number of
free electrons per atom calculated from the plasma frequency ω p . However, even
in this case they remain different. The main differences are related to the fact that
the reference formulas were derived for a point charge projectile, and they take
into account all the electrons of the target hidden in the combined parameter Ζ t ,
whereas the present formulas are derived for extended charge projectile and deal
only with the free electron gas. For a point charge moving slowly in the electron
gas we get directly Eq. (9) derived by Lindhard [1].

4. Conclusions

New analytical formulas for the electronic stopping power and the energy
loss straggling of free electron gas for low velocity projectile were derived. The
statistical description for the bound electrons was used. The dependence of the
effective ion charges on the target electron gas density r s and on the projectile
atomic number Ζi and the degree of ionization ζ was discussed. The differences
between the stopping and the straggling effective charges were found.
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