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Stochastic resonance in a chaotic threshold-crossing system exhibit-
ing on-off intermittency and attractor bubbling: the logistic map with the
control parameter varying randomly or chaotically in time is studied in
the case of weak additive and multiplicative periodic forcing. In both cases
signal-to-noise ratio shows dependence on the forcing frequency; in the case
of multiplicative forcing this dependence appears even for very small fre-
quencies. It is shown that this is a result of a very long characteristic time
scale, typical of systems with on-off intermittency.

PACS numbers: 05.45.+b, 05.40.+j

1. Introduction

The primary signature of stochastic resonance (SR) [1] is that addition of
random (stochastic) noise can improve the signal-tonoise ratio (SNR) at the out-
put of a periodically modulated nonlinear system (for review see e.g. [2, 3] and
conference proceedings [4, 5]). So far, the appearance of SR has been theoretically
predicted e.g. in bistable [6] and monostable [7] systems and in both dynamical [8]
and non-dynamical [9] threshold-crossing systems. The occurrence of SR in systems
in which chaotic rather than stochastic dynamics was used to improve SNR was
also reported e.g. in [10-12]. In the latter case mainly systems with some kind of
bistability (e.g. Chua's circuit or one-dimensional maps in the vicinity of a bound-
ary crisis) were investigated. Only recently SR in a system with Pomeau-Maneville
type-IIΙ intermittency (spin-wave dynamics in nonlinear ferromagnetic resonance)
was investigated experimentally and theoretically [13]. In this case the phases of
periodic and chaotic motion play a role of the two states in a bistable system, and
under the influence of external periodic forcing their sequence has a strong periodic
component. Investigation of SR in chaotic systems is interesting because it offers
a possibility to observe  noise-free SR in which appropriate properties of internal
dynamics of a system are used to amplify SNR inStead of an external noise.

This paper deals with the problem of the influence of additive and mul-
tiplicative periodic forcing on a model system exhibiting on-off intermittency
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(O0Ι) [14-16] and attractor bubbling [17-19]. The investigation is based mainly on
numerical simulations. It turns out that SR is observed as the system control para-
meter is increased. The dynamics of the system is such that SR appears naturally
in the same way as in dynamical threshold-crossing systems [8]. The possibilities
of experimental realization are also discussed.

2. The modeI
In the simplest version of the stochastic resonator proposed by Wiesenfeld

et al. [8] a particle moving in a potential well of finite depth under the influence
of stochastic force is considered. It spends most of the time near the bottom of
the well but sometimes is thrown out of the well. Next, the particle is determin-
istically reinjected into the well after certain refractory time and a short pulse is
produced at the resonator output. If the force acting on the particle has also a
weak periodic component with frequency fs , delta-spikes located at the multiples
of this frequency appear in the power spectral density (PSD) of the output pulse
train and SNR as a function of the input noise strength exhibits a maximum. In
this paper a chaotic threshold-crossing system is considered whose dynamics is
very similar to the above-described one. Namely the logistic map with the control
parameter randomly or chaotically varying in time and with a weak additive or
multiplicative periodic forcing is investigated

In Eq. (1) n is the time step number, yn is the dynamical variable under inves-
tigation, 0 < xn < 1 is a random or chaotic variable, 0 < α < 4 is the control
parameter, ε and δ are amplitudes of the multiplicative and additive periodic
forcing, and x;, is another random variable independent of 2n which represents
additive thermal noise with amphtude ξ (χ;, is assumed to be non-correlated ran-
dom noise with uniform distribution at [0, 1) and ξ « 1 so that yn does not leave
the interval [0, 1)).

In the case ε = δ = 0 the system (1) is a generic model for OOI [15], a
phenomenon occurring in systems with chaotic attractors contained inside invari-
ant subspaces for certain control parameter values. If = 0, xn is a random
non-correlated variable with uniform distribution at [0, 1) (this is the socalled
class-II OOI case [20]) and á < αc = e = 2.718... then yn always approaches the
invariant subspace yn = 0, independently of the choice of initial conditions. Inside
this surface there is a stable, noisy attractor 0 < x n < 1. If α > αc but still αn αc
the socalled blowout bifurcation [21] occurs and the system exhibits OOI: during
long laminar phases yn remains practically equal to zero but occasionally increases
rapidly and a chaotic burst appears. The probability that the laminar phase has
length τ obeys a power-law scaling P(τ) α τ-3/ 2 and the mean duration of the
laminar phases decreases according to another power law (τ) α (α - α c ) -1 [15].
For other choices of xn , e.g. various chaotic time series, these scaling laws remain
valid, only with different proportionality constants and different values of the OOI
threshold αc. In particular, if xn is a chaotic variable with a multi-peaked invariant
density we have class-I OOI [20] for which e.g. (τ) decreases rapidly with the rise
of α. Before the blowout bifurcation occurs the subspace yn = 0 loses the asymp-
totic stability for α> αb = 1. Then under the influence of any small perturbation
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destroying the invariant subspace, e.g. thermal noise ξ > 0, the bursts characteris-
tic of OOI appear already for a > αb, below the OOI threshold. This phenomenon
is called attractor bubbling [17].

For the occurrence of OOI the external variation of the control parameter
in time is not necessary. The analysis of all systems with OOI may be carried
out assuming that there exists an effective, chaotically time-dependent control
parameter which governs the system dynamics in the direction perpendicular to
the invariant subspace [14]. This parameter is, in general, a function of both the
system control parameter (which is constant in time) and state variables. Thus the
phenomenon of SR in systems with OOI may be considered as a kind of noise-free
SR, as in the Pomeau-Maneville type-III intermittency [13].

3. Results
Let us now turn to the results of the numerical experiment with Eq. (1)

for various ε > 0 or δ > 0 and fs . Since the system has a parameter-controlled
time scale (the mean duration of the laminar phase) the occurrence of SR with
varying α may be expected. The numerical tests reveal that this is really the
case. Instead of yn a two-state approximation Υn of the full signal was analyzed:
Yn = θ (yn - Ythr) , where θ (.) is the Heaviside unit step function and ythr was an
arbitrarily chosen threshold for a burst. Typically ythr = 0.01 was assumed; it is
known that assuming such threshold value enables one to distinguish well between
laminar phases and bursts in Eq. (1) without any periodic forcing, i.e. this yields
scaling laws for laminar phases in accordance with theoretical predictions [15].
Thus the time series consisted of a sequence of pulses of unit height and various
lengths rather than of short pul8es with equal lengths as in [8, 9]. A similar encoding
was used in a simple threshold-crossing non-dynamical detector in [22], but in
that paper the distribution of the pulse lengths was determined mainly by the
correlation time of the noise while here it is determined by the dynamics of the
system (1). Both for additive and multiplicative periodic forcing peaks in the PSD
S(f) at odd and even multiples of fs were seen. SNR at the n-th harmonic of fs
(n = 1, 2, 3) was evaluated as SNR = 10 log [SP (n f) /SN (n f)]. Here SN (n f) is
the PSD of the noise background at nfs and SP (nfs ) = S (nfs ) - SN (nfs ) is the
respective peak height. As SNR measured in this way is sensitive to the bandwidth
Δf all measurements were normalized to a standard bandwidth Δf = 2 -12 [6].

Additive periodic forcing. If ε = 0 and ξ = 0 then setting 0 < δ« ythr/2is
equivalent to switching on a periodic perturbation transverse to the invariant sub-
space yn = 0 and for α > áb = 1 the noisy attractor contained inside this subspace
exhibits bubbling. First, the case when x n is  a random non-correlated variable
with uniform distribution at [0, 1) (class-II OOI) will be analyzed. Examples of
the SNR vs. αn curves at three first harmonics of f s are depicted in Fig. 1a-c. The
shape of the SNR curve measured at the first harmonic is characteristic of SR.
In Fig. 1a, which shows results for δ = 4 x 10 -4 , the maximum of the SNR is
located above αn = αb but below α = αn for a wide range of frequencies fs , thus
here SR in attractor bubbling is obtained. It should be emphasized that yn during
the bursts can exceed ythr by an order of magnitude (Fig. d), thus the dynamics
of the system (1) plays an important role in the occurrence of SR in this case. The
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maximum value of SNR and its location strongly depend on the frequency of pe-
riodic forcing for high fs , an effect rather characteristic of SR in bistable systems,
but saturate for low frequencies. For fs = 2-3 a small additional peak occurs at
αn 1.4 (hardly visible) which disappears for decreasing fs , an effect also typical
of bistable systems [23]. SNR at higher harmonics also exhibits SR (Fig. 1b, c).
As the forcing frequency decreases, SNR at the second and third harmonics of the
forcing frequency increases and in both cases exhibits characteristic dips called
noise-induced resonances (Fig. 1b, c) [24].

If the amplitude of additive forcing δ is increased, SNR also increases and
its maximum is shifted towards smaller values of a. The dependence of the SNR
on the forcing frequency, seen in Fig. 1a, decreases. Addition of a certain amount
of thermal noise ξ ≠ 0 has a similar effect. If δ ythr/2 but still δ < ythr/2 and
ξ = 0 or if δ/2 + ξ ythr the maximum of the SNR is observed at very small a,
below the bubbling threshold ab. In this regime the mechanism for the occurrence
of SR is the same as in the case of non-dynamical threshold-crossing detectors [9].
The dynamics of yn is mainly governed by the two last terms on the right hand
side of Eq. (1) with the first term being a source of small additional noise with
non-uniform distribution (cf. [18]). SNR in this limit exceeds that obtained in the
dynamical regime discussed previously. This limit is not interesting from the point
of view of chaotic dynamics.

As an example of SR in a system exhibiting class-Ι OOI, Eq. (1) with xn .

generated by another logistic map xn+1 = rxn . (1 - xn ) with r = 3.75 is considered.
For this value of r the logistic map has a multi-peaked invariant density and thus
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the value of (τ) increases rapidly as a exceeds αc = 1.673 ... [15]. The SNR at the
first harmonic of the forcing frequency is shown in Fig. 2 for δ = 4 x 10-4 and
ξ = 0 and again SR in attractor bubbling (for á < α) can be seen. The properties
of SR in this case are very similar to the ones in the case of a system with class-I
OOI. However, the width of the SR peak is small when compared to the result in
Fig. 1a and SNR decreases rapidly with a after passing through the maximum.
In the class-I OOI case it is extremely difficult for yn to approach the invariant
surface yn = 0 [20] and this must be true also in the regime of attractor bubbling,
so Υn Ξ 1if a » ab and the periodicity of the perturbing term is unimportant in
comparison with its repulsive action in the vicinity of the invariant surface yn = 0.
Another interesting property is that the maximum SNR exceeds in this case the
one produced by x n taken as random non-correlated variable.

Mudtipdicative periodic forcing. The SNR: curves obtained for δ = ξ = 0,
ε = 0.05 and with xn being a random non-correlated variable with uniform distri-
bution at [0, 1) are shown in Fig. 3 for decreasing frequencies fs . If fs = 0.125 only
monotonic increase in SNR with a is observed within the borders allowed for a:
0 < α < 4- 2ε. The maxima in SNR vs. a curves can be seen only for low frequen-
cies of the periodic forcing. Their values increase and their location shifts towards
smaller values of a as fs decreases. SNR does not saturate even for very small
frequencies of the multiplicative periodic forcing. This result may be compared
with the predictions of the following simplified adiabatic approximation [6, 8].

In the adiabatic limit, using the continuous time approximation, the thresh-
old crossing rate α(t) for the system (1) depends periodically on time, as under the
influence of the periodic multiplicative forcing also the OOI threshold αc becomes
periodically time dependent. The instant value of αc(t) for given t may be obtained
from the solution of the equation [15]

where p(t) = ε (1+ cos 2π fst) is the multiplicative periodic forcing. For ε = 0 and a
just above αc = e the mean laminar phase length scales as (4= e2 / [2 (a — α,)] [15].
Just above the OOI threshold the bursts are rare and short, therefore neglecting
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their influence on the threshold crossing rate yields α = 2(α — α )/e2 , for a> α .

Thus for 0 < ε « 1 one gets for α(t)

Expanding the rate (3) in the Fourier cosine series at [0, Τs ), where Τs = 1/fs is
the forcing period, and utilizing the results of [8] yields the expression for SNR
at the first harmonic: SNR = 10 log [mil/ (4α 0 Δ f )] , where αn is the n-th Fourier
coefficient and the dependence on the bandwidth Δ f was included. This approxi-
mation for SNR is evidently wrong if the bursts occur frequently and their average
length is comparable to the one of laminar phases, but just above the onset of 0OΙ
this prediction should be at least qualitatively correct. Surprisingly, as shown in
Fig. 3, this is not the case. The numerical value of SNR is by some dB smaller
than the one evaluated on the basis of the above approximation, and, what is
more important, SNR approaches zero for a considerably greater than it may be
expected from the simple theory. It turns out that yn falls to zero if a < 2.47 for
the range of frequencies investigated in Fig. 3, and no bursts appear for such a, so
in the two-state approximation SNR = 0.

The latter discrepancy is rather not a result of the approximations ap-
plied but has its roots in the "averaging" properties of systems with OOI. The
time-independent threshold for OOΙ with multiplicative periodic forcing á may
be evaluated as in the case ε = 0, by requiring that the time-averaged Lyapunov
exponent in the direction perpendicular to the invariant surface yn = 0 was equal
to 1 [15]. This yields the condition

where (.) denotes the average over one period  Τ. For example, if xn is a random
variable with uniform distribution and Ts = 8, this yields a = 2.477, in agree-
ment with the numerical results. Therefore the system (1) with ε > 0 possesses a
well-defined, time-independent OOI threshold. It seems that even for small fs this
"averaging" tendency prevails and only in the limit of extremely small fs the OOI
threshold becomes time dependent and closely follows the periodic forcing term;
the characteristic time scale of the system is simply very long. Thus the theoretical
description of SR in this case must go beyond the adiabatic approximation even
for small fs and it is still an open problem.

4. Discussion and concIusions

In the present paper, the effect of additive or multiplicative periodic forc-
ing on a model of chaotic threshold-crossing system exhibiting OOI and attractor i

bubbling was investigated. In both cases SR was obtained in the two-state approx-
imation. In the case of additive forcing SNR depends on the forcing frequency, but
for small fs it is frequency independent. In this case many properties of SR are
similar to the ones obtained when• this effect is investigated in bistable systems.
This probably may be explained by the fact that intermittent bursts are not single
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spikes, but their lengths have a certain distribution. Thus the two-state approxi-
mation produces a signal similar to what can be expected in asymmetric bistable
systems. Α close connection between such systems and threshold-crossing dynam-
ics was pointed out in [25]; moreover, a dynamical system, but without OOΙ —
a noise-driven semiconductor diode which produces time serie8 consisting of short
pulses of light of various length was proposed to look for SR in [26]. In the case
of multiplicative forcing SNR continues increasing even for very small fs and the
adiabatic approximation fails. It was shown to be connected with the properties of
systems with OOΙ which tend to average the influence of the periodic multiplica-
tive forcing over time.

The results presented in this paper are closely related to the observation of
SR in a system with Pomeau-Maneville type-IIΙ intermittency [13]. However, the
system (1) has more in common with utilizing dynamical threshold-crossing de-
tectors in SR than the systems with "conventional" intermittency, in which a time
sequence of chaotic and periodic phases with approximately the same amplitude
of oscillations is observed. Though a discrete-time map (1) is only a mathematical
model, the results of this paper may serve as a starting point for experimental
observation of SR in several physical systems exhibiting OOI. They include e.g.
investigation of the influence of periodic forcing on the dynamics of synchronized
chaotic oscillators [27], as it is known that the loss of synchronization occurs via
ΟΟI or attractor bubbling [28, 17, 18]; this problem may also have interesting
implications for the recently developed methods of secure communication [29]. It
is also worth noting that one of the first experimental observations of ΟΟΙ took
place in chaotic spin-wave dynamics [30, 31]. It offers the possibility to observe
SR in a system exhibiting ΟΟI in similar conditions as in the above-mentioned
experiment of Ref. [13]. We hope that these problems will be addressed in our
future work.
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