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The quasiparticle states in strongly illuminated semiconductors are light
hybridized electron and hole states, Galickii quasiparticles. Their properties,
especially if they are photoexcited at small detunings, may be rather com-
plex. A protracted formation period is followed by quantum beats of two
decaying resonances corresponding to both sides of the hybridization gap.
On an example of elastic scattering on an alloy disorder, these phenomena
are demonstrated and analyzed in terms of poles of the retarded Green func-
tion and the corresponding residuals.

PACS numbers: 71.55.Eq, 72.10.Bg, 78.47.4+p

1. Introduction

Quasiparticles, i.e., dressed electrons and holes, are used for decades as the
basic notions in description of electric or optical transport processes in semicon-
ductors. However, they are operationally relevant only in case that they act in
the physical processes as a whole; it is thus required that a bare particle should
convert to quasiparticle instantaneously, and further develop according to a simple
evolution law resembling the bare particle evolution, perhaps with a renormalized
dispersion law and with a finite life time. The excited state of the solid should be
expressed in terms of the quasiparticle distribution. This latter question will be
not treated in this paper, where we concentrate on the details of a single particle
(electron or hole) excitation.

Usually the process of quasiparticle formation is very fast, but it can become
anomalously long near scattering threshold or resonances. The relevant quantita-
tive measure is the quasiparticle formation time in comparison with other char-
acteristic times. Of these, the most important is the quasiparticle life time. These
questions are best studied on behavior of an instantaneously injected one particle
excitation, or, more precisely, of its retarded Green function (GF). For external
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disturbances strong enough, evolution of the quasiparticle exhibits coherent depen-
dence on the external fields. We will address here the nonlinear optical excitation
by a strong light pulse. Several extrinsically defined times enter the picture, like
the pulse duration, and the Rabi period related to the transient optical hybridiza-
tion of the conduction and valence one-electron states. For intense subpicosecond
pulses, these times may become comparable with the duration of the quasiparticle
formation and decay. The optical hybridization acts very anisotropically in the
quasimomentum space, and the quasiparticle behavior is found to depend on the
pulse characteristics in a manner correspondingly sensitive to the detuning of the
bare photogenerated electron—hole pair. We will refer to the optically hybridized
states of electrons and holes as to Galickii quasiparticles, and our aim is to study
their short time transient behavior.

This problem of general importance becomes tractable in the case of purely
elastic scattering, like by a static alloy disorder [1]. After configuration averaging,
the evolution equations for the distribution become strictly decoupled from the
one particle Dyson equation, and the latter can be solved using a generalized
coherent potential approximation (CPA). All this will not be repeated here. We
rather employ results obtained already for this particular case in order to develop
a generalized definition of a quasiparticle state and analyze several characteristic
situations.

2. Galickii quasiparticles in a disordered semiconductor.
Formal background

We use a model semiconductor with two parabolic bands and direct gap,
somewhat resembling GaAs. It is exposed to a strong stationary illumination with
frequency w and electric field amplitude &, treated in the rotating wave approxi-
mation. Then, in the so-called Galickii representation, the action of illumination
upon the electrons is given by a time-independent hybridization of both bands. The
static disorder acts only in the conduction band, and it is described by a self-energy
function ¢(z) which depends on the external field in the fully self-consistent CPA
treatment and is defined in the closed upper half plane for the retarded GF, being
analytic off the real axis [2]. The averaged Green function incorporating all these
physical ingredients is diagonal with respect to the quasimomentum k, but not
with respect to the band index. For one k, it is given, in the ¢ — v representation,

as
1 z—¢€ —hw Q
G'(k,2) = — v , 1
(k, 2) D(z)( Q z-ec—a) (1)
where the k£ and 2 dependences are not indicated for convenience and

D(z) = (z — €. — 0(2))(2 — €& — Fw) — Q°. (2)
Here, €.(k), €,(k) are the bare bands, o(z) is a k-independent self-energy and the
light induced hybridization Q = e&yx., is taken as a real constant. In Fig. 1, we
show, in the left hand panel, the bare bands, and the hybridization gap, as it would
be created by the illumination in a crystal without disorder. The right hand panel
shows the self-energy, which also develops a gap due to the illumination, but with
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Fig. 1. Left: Bare band structure and bands hybridised by the light with the strength
Q = 0.01 eV. Vertical dotted lines show detuning scale. Two arrows illustrate photo-
generated e-h pairs with detunings § = 0.02,0.04 eV. Right: Imaginary part of electron
self-energy due to static disorder with optically induced gap. The dots, self-energy with-
out illumination. The two points show the self-energies for detunings above.

a modified width [3]. In dots, the self-energy without illumination is shown for
comparison. The time domain is attained by Fourier transform

G*(k,t) = / ;r—iG”(k,E+i0)e‘iE'/“. ' (3)

Equations (1)-(3) form, once the self-energy is given, the full formal framework
for our analysis.

3. Definition and characteristics of the quasiparticles

The “natural” way of finding quasiparticle energies and states is to find the
poles (i.e., resonances) of the GF from the secular equation

D(zq) = 0. (4)
We will contrast two situations:

(A) 0 = o' +i0” = const, Wigner-Weisskopf model

(B) o is z-dependent, scattering included self-consistently; present paper.
In case (A), the z-dependence of the GF, or of related quantities is explicit. There
are precisely two solutions of Eq. (4) with pole energies z¢, z,. The Green func-
tion (1) can be ezactly decomposed as

Py P, . .

Case (A) G(z)= pr— + = o (5)
where the k-dependence is not indicated. The pole residues have the following
properties of quasiparticle state projectors:

Case (A) P}=P, P2=P, PP,=0, P,+P =1 (6)
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Finally, the corresponding time-dependent propagator is of the Wigner-Weisskopf
form,

Case (A) G"(t) = P, exp(—izit/h) + P, exp(—izut/h), t > 0. @)

In general, the effective Hamiltonian is non-Hermitian. Without hybridiza-
tion, the electrons in the ¢-band would relax exponentially with the decay time
/|e"|. The hybridization transfers this damping also on the valence states. Both
quasiparticle energies give rise to a finite quasiparticle life time. The quasiparti-
cle projectors are non-Hermitian and, written as dyads, define the left and right
quasiparticle states

Case (A) Pue=lu,0)(@ 2], P},# Pus. (8)
Only if 6" = 0, the case of stable quasiparticles, the resonance energies are real, the
survival amplitudes are not damped, and the quasiparticle projectors Hermitian.
Case (A) thus appears as the general Wigner-Weisskopf quasiparticle model with
finite life time.

In the case (B), when o becomes energy dependent, it may still be possible
to find both poles from the “secular equation” (4) analytically continued to the
non-physical sheet of its Riemann surface, and to construct operator residuals,
e.g., '

Case (B) Ry, = zl_lgl (z — 24)G(2) = (dD(2)/d2);2,,

z2— €y — hw Q
( Q z2—€—0(zy) ) )

These residuals need not even be idempotent, but we may write the following
spectral representation for G(z):

Case (B) G()= Zy—" 4+ 2,— Tt 4 F(z)=Gp+F. (10)

z2— 2y z2—2z

As indicated, we separate the pole part Gp and the regular part F. Complex
renormalization constants are introduced such that P, , become idempotent. In
contrast to (6), they do not form a decomposition of unity, because they belong
to different resolvents

Case (B) P}=P, P!=P, PP, #0, P,+P#1. (11)
As a result, the two quasiparticle states interfere in the time domain
Case (B) G"(t) = Z¢Prexp (—izet/h) + 24Py exp (—izyt/h) + F(t)

= Gp(t) + F (1), t>0. (12)
It is expected that F* represents the quasiparticle formation and that it essentially
vanishes after a quasiparticle formation time 7. The surviving exponentials of G%
cannot be separated by any projection filtering because of the overlap (11). How-
ever, this mutual leakage of the quasiparticle states can be entirely absorbed in the
initial condition for the Green function. To show this, we write the quasiprojec-
tors Py ¢ in the form (8), as is always possible. We introduce biorthogonal vectors
L), |U), by
(EL) = 1, ((U) =0, (ulL) =0, (ulU) =1 @
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Fig. 2.

813

cc-element of the anti-Hermitian part of GF as a function of energy for detuning

§ = 0.04. Thick full line — {c|G"(E+i0)|c); thin full line — {¢|G}(E+i0)|c); dashed line
— {c|Gy (E-+i0)|c). The inserts show quasiparticle representation. Right hand panels:
{U |G"Iu) and [{(U]G(t)|u)|? for all three GF. Similar holds for £-elements on the left

“hand side.
Fig. 3.

. the quasiparticle picture, in contrast to the more regular case shown in Fig. 2.

The same as in Fig. 2 but for detuning § = 0.02 eV. Notice the insufficiency of
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and define auxiliary projectors ITy and IT; having the usual properties (6):

= |6)(L], 1T, = [u)(U. | (14)

It is then easy to verify that
G'(t) = Gw(t)Z + F*(t), t>0, (15)
Gw(t) = Hyexp (—izet/h) + I, exp (—izut/h), (16)
Z = Z,P + Z,P,, an

where G, may be termed the Wigner-Weisskopf propagator and Z is an operator
renormalization constant.

_ 4. Results of numerical calculation

While in the linear response the photoexcitation takes place strictly at the
one-photon resonance (cross-over of the bands in Fig. 1), for a strong illumination,
it spreads over the region of k-space, where the hybridization is noticeable. We
present two cases for different detunings § = e (k) — €, (k) — hw of the energy of the
vertical pair in question. The detuning scale and both cases considered are shown
in Fig. 1, too. Both é’s are positive, so that the u state is c-like, the ! state is v-like.
In Fig. 2, 6 = 0.04 eV. This falls already in the side wing of the hybridized area.
The large plot shows the “spectral density” (c|G"(E+i0)|c), the cc element of the
anti-Hermitian part of the GF. The upper peak has a width ca. ¢”, while the lower
is rather sharp and its total relative strength is small. Along with the full G*, we
consider also G5 and G%,. They are shown in light and dashed lines, respectively.
Only minor deviations are observed, which shows that the F* contribution is small
and that the renormalization eflects are weak. The two peak structure would lead
in the time domain to Rabi beats, which shows that the band representation is
not suitable. The inserts relate to the quasiparticle representation. The right hand
panels present the elements (U|G”|u) and |[(U|G(t)|u)|?, again for all three GFs.
They are not unrelated, for example,

(U1G(®)lu) = (UIGH(t)lu) + (UIF(t)u)

= (U1GSy (O)lw) Zu(alu) + (UF(O)lu). (18)

Similar holds for the f-elements on the left hand inserts. In Fig. 2, the filtering
is good, the formation is fast and the £ quasiparticle decays rather slowly. For
6 =0.02 eV (Fig. 3), G* and G% differ appreciably. The difference gives F. Indeed,
pronounced formation effects are apparent until ¢ = 0.4 ps, so that the u parti-
cle dies before it got properly formed. Also the difference between Gp and Gw
documents the effects of renormalization.

' Acknowledgment
This work was supported by the Grant Agency of the Czech Republic under
the project number 202/96,/0098.
' References
[1] P. Soven, Phys. Rev. 156, 809 (1967); B. Velicky, S. Kirkpatrick, H. Ehrenreich,
Phys. Rev. 175, 747 (1968).
(2] A. Kalvova, B. Velicky, Z. Phys. B 94, 273 (1994); B Velicky, A. Kalvova, Phys.
Status Solidi B 188, 515 (1995).
(3] A. Kalvova, B. Velicky, Z. Phys. B, in print; A. Kalvova, B. Velicky, Acta Phys.
Pol. A 90, 837 (1996). .



