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TWO-ELECTRON QUANTUM DOTS
IN MAGNETIC FIELD
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A theoretical description is given for electronic properties of semicon-
ductor quantum dots in a magnetic field. A two-electron model is applied
for electrons in a cylindrical quantum dot with a parabolic confinement po-
tential. The eigenvalue problem is solved by the variational method with the
trial wave function proposed in the form of linear combination of S-type
and P-type Gaussians. The energy levels of singlet and triplet states with
arbitrary radial and magnetic quantum numbers have been calculated as a
function of the applied magnetic field. The calculated cyclotron transition
energies agree well with those measured for InGaAs/GaAs quantum dots. It
is shown that the electron—electron interaction has a small influence on the
transition energy.

PACS numbers: 73.20.Dx

Quantum dots (QDs) are artificially made nanostructures of dimensions
1-100 nm. They consist of a finite number (from 1 to about 100) of electrons,
which are not bound with ions, but are confined within the QD region. Recently,
the QDs of many different shapes are fabricated. The most common are those of
cylindrical and spherical forms. The cylindrically shaped QDs embedded in semi-
conductor layer structures are investigated in Refs. [1, 2].. They are designed in
order to get miniaturized field-effect-transistors [1, 2]. The nanostructure studied
in Ref. [2] is built from a sequence of layers of lateral diameter of about 20 nm and
consists of a semiinsulating GaAs substrate covered by a strongly doped GaAs
buffer layer, an undoped GaAs layer, on top of which is a few-monolayer thick
Ing 5Gag.5As quantum dot, which is embedded in a 5 nm thick GaAs layer. The
blocking barrier is formed by a 30 nm thick AlAs/GaAs superlattice with a period
of 4 nm. The nanostructure is covered by a GaAs cap and a semitransparent NiCr
gate electrode. The authors of Ref. [2] measured the infrared transmission spectra
in the magnetic field, which was applied in the growth direction. They recorded
the cyclotron transition energy and interpreted their results with the help of the
one-electron model. :

There arises a problem of the influence of the electron—electron interaction
on the energy spectrum and transition energy. The present paper provides the
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solution to this problem in the frame of the two-electron model, which allows us to
treat accurately the electron-electron interaction preserving the main qualitative
properties of the interacting many-electron system. Our purpose is to solve the
eigenvalue equation for the two electrons in a parabolic confinement potential
and external magnetic field and find the transition energy between the low-energy
quantum states.

The QD of the very small thickness [2] can be treated as a quasi-two-dimen-
sional system of a cylindrical symmetry. We apply the effective-mass envelope-func-
tion method and assume the parabolic form of the confinement potential acting on
the electron, i.e. Veont(73) = mew3r?/2, where me is the effective conduction-band
mass of the electron, wy is the “confinement frequency”, and r; = (z;,¥:,0),
i = 1,2. The external static uniform magnetic field is applied in the growth (2)
direction, i.e. B = (0,0, B). We introduce the following units and parameters: unit
of length (“confinement length”) ag = (h/mewo)/2, unit of energy hwo, strength
of electron~electron repulsion A = ag/ep, where ag = th"’/mee2 and ¢g is the
static dielectric constant, and frequency ratio g = w¢/wo, where we = eB/me is the
cyclotron frequency. The Hamiltonian H of the two-electron system in the confine-
ment potential Veonr and magnetic field B can be separated in the center-of-mass
and relative coordinates. In the present paper, we introduce the following position
vectors: R = (v + r2)/v/2 and r = (r; — r2)/+/2, which leads to the separation
H = Hp + H,, where \

H,=_%v%,+£2‘-L,+%(1+"Z)r2+—\/’\E (1)
and Hg has the same form, but without the last term. In Eq. (1), L, is the
z-component angular momentum operator. The eigenvalue problem for Hg pos-
sesses the well-known Fock-Darwin [3] solutions, on which the one-electron model
[2] is based. Several numerical methods [4-6] were used in order to solve the eigen-
value problem for Hamiltonian (1). Recently, Zhu et al. [7] have applied the method
of series expansion with different series in different regions of space. In the present
paper, we propose the variational method with the Gaussian basis wave functions.
This approach is quite simple in programming, leads to the results of compara-
ble accuracy to those in Refs. [4-7], and allows us to calculate the energy levels
and other experimentally accessible quantities for the singlet and triplet states of
arbitrary radial and magnetic quantum numbers.

The eigenstates and eigenvalues of Hr and H, are labelled by the radial
(N and n) and magnetic (M and m) quantum numbers. The energy eigenvalues
of the total Hamiltonian H are given by

Enmam = Enm + Enm; (2)
where the energy levels of the Hamiltonians Hg and H, are given by the first and
the second term in the right-hand side, respectively. Both solutions are identical
for A = 0, i.e., without the electron-electron interaction. In this paper we neglect
the spin-splitting of energy levels in the magnetic field, which is not observed in the
experiments [1, 2]. The eigenstates of Hamiltonian (1) can be classified according
to the total spin of the two-electron system; the spin singlet states are associated
with the symmetric spatial wave functions, i.e., these with even m, and the spin
triplet states — the antisymmetric spatial wave functions, i.e., m — odd.
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For r — 0 and m = 0, we obtain the following analytical (unnormalized) form
of the ground-state wave function: ¥(r) =~ 1+ 2Ar, which is in agreement with the
- cusp condition for electrons. In a general case, we solve the eigenvalue equation
for Hamiltonian (1) by the variational method, with the trial wave function being
a linear combination of S-type Gaussians, exp(—a,r?), and P-type Gaussians,
rexp(—apr?), where o, , are the nonlinear variational parameters. We apply the
mixed S-type and P-type basis for the states with m = 0, and the P-type basis for
the states with m # 0. Very accurate results for the low-energy levels are obtained
with 10 basis functions. '

Figure 1A shows the calculated energy levels E,,,, as a function of cyclotron
frequency. The shapes of curves in Fig. 1A qualitatively agree with those measured
by the single-electron capacitance spectroscopy [1] for GaAs quantum dots, which
yields a justification of the assumed parabolic form of the confinement potential.
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Fig. 1. (A) Calculated energy spectrum Enp of the two-electron relative-coordinate
Hamitonian vs. magnetic field. Curves with full circles correspond to m = 0, open
squares — m = —1, full squares — m = 1, open diamonds — m = -2, and full
diamonds — m = 2. The radial quantum number n = 0,1, 2 for the subsequent levels,
the electron—electron repulsion strength A = 1, w is the cyclotron frequency, and wo —
confinement frequency. (B) Transition energy between the ground state (0,0) and the
excited states (0,—1) (curves (a) and (c)) and (0,1) (curves (b) and (d)) as a function
of the magnetic field. Curves (a) and (b) ((c) and (d)) correspond to the two-electron
(one-electron) model, and the dots are experimental points.

We have applied our approach to the QD in a magnetic field, for which the
magnetooptical transmission measurements [2] were performed. The calculated
and measured [2] cyclotron transition energies are displayed in Fig. 1B. Since the
confinement frequency wo is an unknown parameter, we treat it as an adjustable
parameter and deduce its value from the fit to the experimental data [2]. In the
two-electron model, we obtain fiwp = 40 meV, while the one-electron model [2]
leads to fiwg = 41 meV. The values of the other parameters are taken on to be
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the same as in Ref. [2], i.e. m = 0.07m¢o and g = 13.0. The two pairs of curves

in Fig. 1B show the results of the one-electron (broken curves) and two-electron
(solid curves) model. The curves (a) and (c) correspond to the (0,0) — (0,~1)
transitions, which are not observed, since these energies lie in the reststrahlen
regime [2]. The curves (b) and (d) correspond to the observed [2] (0,0) — (0,1)
transitions. The transition energy, calculated in the present paper in the frame
of the two-electron model (curve (b)), agree very well with the experimental re-
sults [2]. We should note, however, that the correction to the one-electron model
(curve (d)) is small. This property is in agreement with the generalized Kohn the-
orem [8], which states, in the dipole approximation, that the cyclotron transition
energy is independent of the electron—electron interaction for the parabolic effec-
tive potential. The results of Fig. 1B show that the electron—electron interaction
has only a small influence on the transition energy. We note that the present re-
sults have been obtained without the use of the dipole approximation for radiative
transitions.

A similar problem has been treated by Peeters and Schweigert [9], who ad-
ditionally included the confinement potential for the electrons in the z-direction.
These authors [9] approximated the electron—electron interaction by the averaged
two-dimensional potential, and obtained the cyclotron transition energies in quite
good agreement with the experiment [2] but with a smaller transition energy at
the low magnetic field. Due to the uncertainties in the determination of the con-
finement potential, we can regard both the present results and those of Ref. [9] to
be satisfactory.

In future research, it would be interesting to consider in the framework of
the present model (or its many-electron generalization) the properties of electrons
in quantum dots, which are more strongly dependent on the electron-electron
interaction.
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